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AB STRACT

This report describes the initial phases of an investigation of hybrid

propellant combustion instability. Experimental studies carried out during

the first year of this program were principally concerned with the delinea-

tion of steady-state hybrid propellant regression rate/pressure coupling

in the pressure-sensitive regime, because acoustic instability is expected

to depend on the same coupling mechanism. The data established that the

onset of the observed dependence of regression rate on pressure at low

pressure is attributable to the behavior of the chemical kinetic processes

in the gas-phase flame zone. This result provided the basis for theoreti-

cal studies performed during the program.

A theoretical model, based on classical turbulent flame theory, was

proposed and a mathematical analysis was developed that provided good agree-

ment with the observed steady-state regression rate/pressure dependence at

the fixed oxidizer mass flux,

During a few of the experiments, a spontaneous instability correspond-

ing to the longitudinal mode of the chamber was observed to develop, Fu-

ture studies will be concerned with the delineation of conditions under

which the regression rate response to pressure fluctuations can support

such instability.
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I. I NTRODUCT I ON

Increased interest in the development of the hybrid rocket as an im-

portant propulsion device has naturally led to a consideration of its

behavior over a wide range of operating chamber pressures. Earlier studies

of hybrid combustion have concentrated on the high-pressure regime in which

the regression rate is controlled by the turbulent diffusion mechanism in

the boundary layer formed over the vaporizing surface. For this operating

regime a relatively comprehensive theoretical description has been devel-

oped. 1-6 For most propellants the theoretical model is in good agreement

with experimental observations at pressures above about 200 to 300 psi.7, s

The theory shows that in diffusion-limited combustion the regression rate

is independent of pressure for a given mass flux through the port.e, s

For each propellant there is a pressure threshold above which the

diffusion-limited theory becomes valid. Below this threshold there is a

decrease in the regression rate with a decrease in the pressure at a fixed

oxidizer mass flux.9, l° The next step in the development of hybrid com-

bustion theory must be a description of the low-pressure regime, in which

the regression rate is pressure sensitive.

Smoot and Price attempted to correlate their data in a semiempirical

fashion, assuming heterogeneous attack to be the rate-controlling factor. 11

An analysis by one of the present authors, however, has shown the hetero-

geneous reactions alone cannot lead to the observed pressure dependence, s

Miller has proposed a model in which the pressure dependence is at-

tributed to the broadening of the gas-phase flame zone caused by reduced

reaction rates. 12 Several objections may be raised to this treatment.

For example, isothermal conditions are assL_ed, and convective transfer



is neglected relative to diffusive transport. These assumptions are not

applicable to hybrid combustion.

A third treatment, advanced by Kosdon and Williams, is an analysis

of small departures from the pressure-independent, diffusion-limited re-

gime. Is Comparisons of this theory with measurements taken under condi-

tions far from the diffusion-limited regime, for which the theory cannot

be valid, show much better agreement than in the small-departure regime,

to which the theory should be applicable. 13

The presence of pressure sensitivity in the regression rate leads to

the possibility of an acoustic combustion instability mechanism similar

to that encountered in solid propellants. A review of the existing liter-

ature shows that little of the research conducted in this country has been

directed specifically toward the combustion instability problem in hybrid

motors. A study of available instability data suggests, however, the ex-

istence of at least three major categories of hybrid combustion instability

phenomena:

I , Instability due to the lag time associated with vaporization and

combustion of liquid droplets (with liquid injection). This type

of instability is related to that in liquid propellant motors but

is probably considerably more complex, owing to the influence of

the solid-liquid interface processes that affect lag times.

2. Unstable burning associated with periodic accumulation and break-

off of char layers or melted layers at the surface. The result-

ing instability is generally low in frequency (like "chuffing")

and occurs during operation at low regression rates.

3 The combustion instability mechanism mentioned previously, which

is related to that encountered in solid propellants. Here the

acoustic admittance of the reacting turbulent boundary layer plays

a key role, and the instability becomes more severe with a pres-

sure-sensitive regression rate.

The first year's effort on this program has been devoted largely to the

third type of instability, which is potentially the most critical. Because



the presence of acoustic instability depends on the presence of a pressure-

sensitive regression rate behavior, an understanding of the steady-state

combustion mechanism that leads to pressure sensitivity in this regime is

a prerequisite to development of a combustion instability theory. For

this reason the main objective of the first year's effort has been to de-

fine, both experimentally and theoretically, the dependence of regression

rate on pressure in the kinetically controlled regime for several repre-

sentative hybrid propellant combinations. It was found that a relatively

simple analytical model based on classical turbulent flame theory exhibits

good agreement with the observed regression rate/pressure dependence.

3





II. BACKGROUND

Before proceeding to a discussion of the work carried out under the

current program, it is worthwhile to review the previous status of hybrid

combustion fundamentals. The basic premise underlying existing theory

is that the combustion process may be described through a boundary layer

model. It has been well established I 2 that in a boundary layer with com-

bustion and a mass addition rate typical of the hybrid application, trans-

4
ition occurs at a length Reynolds number, Re of approximately 10 , or very

X

near the leading edge of the grain. Therefore, a turbulent boundary layer

treatment is required for a heat transfer theory of hybrid combustion.

All present treatments of turbulent flow are necessarily semiempirlcal,

but the cumulative efforts of a number of investigators such as Lees 14 and

Spalding 15 have resulted in a reasonably satisfactory and remarkably simple

description of heat and mass transfer in turbulent boundary layers with

chemical reactions.

A detailed development of the theory describing hybrid combustion in

the pressure-insensitive (or high-pressure) regime is presented in Ap-

pendix A. It is shown that in a hybrid motor in which radiative heat trans-

fer is negligible, the regression rate is given by:

pf_ c - 0.036G -- )0.6 .23 -0.2- h (P/Pe B tO Re (1)
Z

V

The radiative heat transfer to the solid grain is given by:

4 4
Q = (7 e e (W - T ) (2)

r w g r w



When radiation is present to a significant degree, as in a motor with

high metal loading, the regression rate is described by the expression:

Ie /Q Q_I

Qc -Qr c

Pf/"- h + (3)
V

c/h is given by Eq. 1. It will be noted that when radiation iswhere Q v

low, i.e., when Qr/Qc << 1, Eq. 3 reduces to Eq. 1. Equation 3 also shows

the trade-off between convective and radiative transfer which occurs be-

cause of the decrease in convective heat transfer with increasing surface

mass addition. Procedures required to use these equations, including the

method of evaluating the effective heat of gasification, h , and the massv

transfer number, B, for a given propellant, are discussed in Appendix A.



III. THEORETICAL STUDIES

Theoretical studies in this program were divided into three parts:

(1) derivation of an expression for the gas-phase emissivity e which ap-
g

pears in Eq. 2; (2) calculation of asymptotic regression rates at high

pressure, using Eq. 3, for the propellant systems chosen for experimental

study during this investigation; and (3) formulation of a theoretical de-

scription of regression rate behavior in the low-pressure, kinetics-limited

domain. Parts 1 and 2 were required to complete part 3, because the theory

of the latter expresses the regression rate in terms of the asymptotic

limit obtained in part 2. Details of the studies are presented in Appen-

dices B, C, and D.

The main theoretical result of the first year's investigation was a

combustion model describing the regression rate behavior in the pressure-

sensitive regime. From this model the following equations were derived

(Appendix D):

where :

-: = 1 - (1 - e
r _

-0.2 0.23
GRe B

1 L
_-C--

n/2 i + n/2 e - Ef/2RUf
_2 p Uf

(4)

(5)

The constant C is related to flame speed kinetics. The characteristic

length _ is associated with the scale of the combustion zone, and _ is
1 2

identified with the scale of turbulence. At present the coefficient

C_I/_ 2 must be treated as an empirically determined constant for a given

propellant system.

7



Typical results obtained from Eq. 4 are shownin Figs. 1 and 2. These

results have been obtained by setting @= 1 at 10 arm pressure (to evaluate

the parameter C£1/_ 2) and using the thermochemical flame temperature versus

pressure behavior of a hybrid propellant system consisting of a 60 percent

polyurethane/40 percent aluminum fuel with oxygen as the oxidizer. Fig-

ure 1 shows the effect of changes in the gas-phase activation energy on

the regression rate behavior when the order of the gas-phase reaction is

held constant. Figure 2 shows the increased effect of changes in n with

E held constant. It can be seen that n is a more powerful parameter than
f

E in affecting the shape of the regression rate curve. The proper choices
f

for these parameters, as well as for C_1/_ 2 must be found by comparison

with experimental data.

_en the validity of Eq. 4 has been established by comparison with

experimental data, it will be incorporated into the hybrid regression rate

computer code for use during the second phase of the program.
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IV. EXPERIMENTAL STUDIES

The experimental effort during the first year of the program was di-

rected toward three objectives: (1) to delineate in detail the regression

rate behavior in the pressure-sensitive regime; (2) to begin defining the

combustion instability mechanism in the same regime; and (3) to begin de-

veloping basic data on the structure of the boundary layer combustion proc-

ess for eventual incorporation into an instability theory. During this

year most of the effort centered on the first objective. This was the

essential first step toward understanding combustion instability; before

the latter can be described theoretically, it is necessary to understand

the mechanism underlying regression rate dependence on pressure in the low-

pressure regime, since instability is likely to result from the same mech-

anism. Studies on objectives 2 and 3 were relatively preliminary in char-

acter and will receive greater emphasis in future work, when the nature of

combustion instability is investigated in more detail.

A. Measurements of Regression Rate Behavior in the Pressure-Sensitive

Regime

Polyurethane and polybutadiene-acrylic-nitrile binders with varying

aluminum loading were chosen as fuels and oxygen was used as the oxidizer

in most of these tests. PU and PBAN were chosen for comparative binder

tests because their surface behavior during regression is quite different.

PU sublimes cleanly at the regressing surface, while the regression of PBAN

consists of the stripping of hydrogen from the surface, leaving a carbona-

ceous char layer that subsequently breaks away in particular form.

Tubular burners of two sizes were used during the experimental stud-

ies. The smaller of the two was designed to accept 2_-in. O.D. grains

ll



whose internal port size and length could be chosen to suit the require-

ments of any given test. Two initial port sizes, 1 in. and i n in. in di-

ameter, were used. This burner was originally designed to operate with

gaseous oxidizers (normally oxygen) and incorporated a tubular entrance

section 12-in. long which is designed to deliver a smooth, uniform oxidizer

flow to the head end of the grain. It can be operated at pressures up to

600 psia. During the later phases of this part of the investigation, this

burner was modified for use with liquid fluorine.

A larger motor case that accepted 5-in. O.D. grains was also fabri-

cated. This burner incorporated a liquid oxidizer injector, but may also

be used with gaseous oxidizers if desired. Nitrogen tetroxide (N204) was

used as the oxidizer for the tests carried out with this motor. It can

also be operated at pressures up to 600 psia.

Appendix E provides a detailed description of the apparatus and pro-

cedures used in these experimental studies.

Initial data from the PU and PBAN propellant systems were concentrated

2
at an oxidizer mass flux of approximately 0.i ib/in. -sec. Data were ob-

tained from 1-in.- and 1½-in.-diameter motors at four pressure levels rang-

ing from about 30 psia to about 260 psia (the exact pressure level for each

firing is given in the figures that follow). Even though the nozzle was

not always choked at the lowest pressure (the critical pressure ratio

across the nozzle is 1.77 for _ = 1.2 corresponding to a chamber pressure

of 26 psia), measurement of the regression rate is significant.

Figures 3 through 5 show the weight loss behavior as a function of

time for the PBAN binder system containing 0, 20, and 40 percent aluminum

in a 1-in. I.D. configuration. Similar data obtained from grains having

an initial I.D. of i n in. are shown in Figs. 6 through 8. In each case

theoretical calculations are shown for the highest pressure level.

12
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FIG. 3 WEIGHT LOSS OF A PURE PBAN HYBRID GRAIN (D o = 1 in.)

It can be seen that there is a significant drop in weight loss (and

therefore regression rate) as the pressure is lowered at all three metal

loadings. At the highest pressure the weight loss agrees well with the

calculated value based upon diffusion-limited theory.

Typical chamber pressure traces measured at the head end of the grain

for two o£ the PBAN systems at high and low pressure are shown in Figs. 9

and 10. It can be seen that the pressure trace from the aluminized grain

is more ragged at high pressure. The initial small pressure rise noted

during the first stages of the high-pressure runs is caused by the preflow

during the ignition period.

A more interesting presentation of the regression rate data can be

obtained by plotting the weight loss at a given pressure divided by

13
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the weight loss at the highest pressure as a function of pressure. At any

given time this curve will depict the behavior of the average regression

rate up to that time. Results for the 1-in,- and l_-in.-diameter PBAN

runs are plotted in this manner in Figs, 11 and 12. The data show a sim-

ilar pressure dependence for both diameters and show that the regression

rate decays to approximately 0.4 of its high pressure value at 1 atm.

It is also evident from Figs. 11 and 12 that there is a scatter of

approximately _10% in the data points obtained from weight loss measurements.
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The agreement between theory and experiment obtained at high pressure

shown in the previous figures is much closer, indicating that most of the

scatter makes its appearance in the kinetically dominated regime. In

general, however, regression rate data obtained from weight loss measure-

ments exhibit scatter because they represent the quotient of two measured

quantities, with the inherent possibility of doubling the experimental

errors.

Finally, in Figs. 11 and 12, both of the regression rates averaged

over 5 and 10 sec exhibit nearly identical behavior, as would be expected

since the change in oxidizer mass flux between the two times is not sig-

nificant.
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Weight loss data for aluminized PU grains are given in Figs. 13

through 15. These data show a similar dependence of regression rate on

pressure to that observed in the PBAN system discussed previously. For

this reason no tests were run in a l_-in, initial port diameter configura-

tion, Results of tests with varying flow, which are discussed in detail

below, are also shown in Figs. 13 through 15. The dependence of the re-

gression rate of the PU grains on pressure will be discussed in a later

section.
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B. Experiments with Variable Mass Flow and Variable Chamber Pressure

In the pressure-sensitive domain of hybrid combustion the pressure

sensitivity may give rise to an acoustical instability, characterized by

the "acoustical admittance, which is defined as the ratio of the regres-

sion rate perturbation induced by a given pressure perturbation to the

pressure perturbation, or hr/hp. As pointed out earlier, the derivation

of an analytical expression for the acoustic admittance depends on the

initial formulation of an expression for the steady-state regression rate/

pressure dependence; this has been the object of the theoretical and ex-

perimental work described above.

Experiments to be described below were conducted to define the con-

ditions under which hybrid instability arises and to delineate the coupling

mechanism. It is well known that solid propellants exhibit unstable be-

havior at frequencies of the order of hundreds of cycles per second.iS, 19

Since the regression rates of the hybrid systems being considered here

are only on the order of one-quarter of typical solid propellant burning

rates, and since the characteristic frequency of maximum response depends

on the square of the burning rate, it was decided to conduct a few pre-

liminary oscillatory experiments by oscillating the oxidizer flow and the

nozzle throat area at about 10 cps while observing the resulting chamber

pressure. This procedure makes it possible to distinguish different coup-

ling mechanisms.

The oxidizer mass flow can be held constant during nozzle throat area

variations by employing a sonic choke at the inlet. On the other hand,

mass flux perturbations that are introduced by oxidizer flow variations

will give rise to pressure perturbations that are induced by the varying

mass flow through the nozzle. In fact, these pressure perturbations can

25



be used as a measure of the mass flux perturbations. Obviously, great care

must be taken in the subsequent interpretation of results to carefully

separate pressure and mass flux effects.

Another facet which must be carefully considered is the chamber re-

sponse. An oscillating oxidizer mass flow will not introduce a correspond-

ing mass flux oscillation in the chamber if the chamber response function

is highly damped at the frequency of interest. Obviously, the chamber

response function must be understood and known before the regression rate

response can be correctly deduced. This point is discussed in detail in

Appendix F. In Fig. 16 the calculated chamber response is shown for

two cases, isothermal and isentropic behavior. The isothermal response

is of course somewhat lower than the isentropic response, owing to losses

in the isothermal case.
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The salient fact that emerges from a consideration of Fig. 16 is that

the pressure response is very low at the higher values of frequency. Since

this response is a measure of the mass flux perturbation in the chamber,

it is evident that at, say, 35 cps a very large upstream oxidizer mass

flow perturbation will be required to obtain a relatively small mass flux

perturbation in the chamber.

A similar calculation could be made for the variable pressure-

constant mass flux case. The general shape of the solution would show

a similar frequency dependence. It is clear that care must be taken to

avoid attributing chamber response effects to the propellant response

which is of main interest.

The experimental systems used for the oscillatory oxidizer flow and

chamber pressure studies are shown in Figs. 17 and 18. A ball valve which

is driven by a variable speed motor was inserted in the oxidizer flow line

just above the inlet sonic choke (see Fig. 17) to provide flow variations.

The frequency of oscillation is determined by the speed of the motor and

the peak amplitude by the upstream pressure. To achieve chamber pressure

oscillations separately, a nozzle slug assembly was built as shown in

Fig. 18. The maximum frequency obtainable from both the ball valve and

the oscillating probe was limited to about 30 cps by mechanical inertia.

Two experimental results are of particular interest in these two

tests: first the determination of whether the mean regression rate (cor-

responding to the mean pressure) is changed by the presence of the oscil-

lation, and second, the comparison of the observed magnitude of the chamber

pressure oscillation to the computed magnitude, which is based upon a

quasi-steady relationship between regression rate and pressure.
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Weight loss data obtained in the PU system under conditions of varying

flow were previously shown in Figs. 13 through 15, The mass flux was

varied approximately by a factor of 2 at a frequency of about 10 cps. It

can be seen that the variable flow rate data follow the same trends as

the constant flow rate data with no discernable differences. Similar re-

sults were obtained in the PBAN system and for pressure changes induced

by a variable throat area. A complete summary of all mean regression

rate data is presented in a later section.

For a typical run in which the mass flux was varied between 0.075 and

2

0.15 lb/in. -sec (with an average value of 0.11) at 12 cps, the chamber

pressure was observed to oscillate with an amplitude of • 7 psi at an

average value of 43 psia. Using representative values of V = 20 in. 3 and

T = 5000°R, the calculated value of the nondimensional frequency T_ is

5.2 and the value of the response is 0.35. As shown in Fig. 16, this re-

sponse is approximately 50 percent higher than the calculated quasi-steady

value. Thus, although the mean regression rate is undisturbed by the oscil-

lating mass flux, evidence of a propellant response is apparent. Further

interpretation of this data must await the theoretical analysis of the

transient regression rate behavior, which is planned for the second year

of the program.

C. Instability Observations

The mean regression rate data reported above, obtained for both 1-in.-

and 1.5-in.-diameter grains, exhibited a similar mean regression rate/
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pressure dependencefor both grain sizes. However, during the burning of

the 1.5-in.-diameter grains, an instability wave was observed to develop

when the tube diameter reached approximately 1.75 in. This event appears

to be an inherent instability in the combustion process.

Typical wave forms for the PBAN-oxygenpropellant system operating

at a meanpressure of 2.5 atm are shownin Fig. 19. The upper trace in

2 msec/cm

(o) 100% PBAN (b) 100% PBAN

(c) 80% PBAN

20% ALUMINUM
-- 2.5 a_m

(d) 60% PBAN

40% ALUMINUM

FIG. 19 INHERENT HYBRID INSTABILITY WAVE OBSERVED AT LOW PRESSURE

IN PBAN-OXYGEN PROPELLANT SYSTEM
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each chart is the energy in the frequency band between 150 and 1500 cps.

At this mean pressure level the mean regression rate is approximately 0.6

of the asymptotic value at high pressure. The frequency of the predomin-

ant mode is about 650 cps, and the peak-to-peak amplitude of the wave is

of the order of 10 psi, or 25 percent of the mean pressure. This wave

form has been observed with all metal loadings up to 40 percent, as shown

in Fig. 19. Such behavior is consistent with the previous observation

that all formulations exhibited the same regression rate/pressure depend-

ence. It is not surprising that the presence of metal particles has no

damping effect, because the observed frequency is too low to be affected

by particle damping phenomena. Of perhaps more fundamental importance is

the observation that the addition of burning metal particles does not in-

fluence either the dependence of the mean burning rate on pressure or the

frequency of the observed instability wave. Such behavior implies that

the burning process (i.e., flame speed) of the volatile products released

by the vaporization of the binder is of primary importance in establishing

the pressure-dependent regime of hybrid combustion.

The rather low frequency which is observed indicates the excitation

of a longitudinal rather than a transverse mode. In this connection it

was found during the studies with variable mass flow that a very low fre-

quency variable mass flow had a definite effect on the instability process.

Typical results for the unfilled PBAN binder system are shown in the se-

quence of photographs presented in Fig. 20. The mass flux was varied

30 percent at a frequency of approximately 10 cps. Photograph (a) shows

that on the average the disturbance is magnified near peak values of the

mass flux (or chamber pressure, since the two are interrelated) and damped

near trough values. Photographs (b) and (c) show the behavior near a

peak at progressively faster sweep rates. The upper trace is again fil-

tered to show the energy between 150 and 1500 cps. In this case the
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instability amplitude is about 15 psi at a mean pressure level of about

90 psia. The frequency is about 650 cps as before.

Figure 21 shows the behavior of the unfilled PI3AN binder system

operating at 15 atm with a steady oxidizer flow rate. At this pressure

level the mean burning rate is accurately predicted by the heat-transfer-

limited theory, and a severe pressure-coupled instability would not be

expected. Figure 21 shows that a small pressure disturbance of about

i0 psi (compared to a mean level of 225 psia) is present; this disturbance

does not exhibit the pure waveform of the instability observed at lower

pressures. It is also of interest to note that the lower unfiltered trace
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FIG. 21

2 msec Icm
TA-6G3B-22

INSTABILITY WAVE OBSERVED AT HIGH PRESSURE

IN PURE PBAN-OXYGEN PROPELLANT SYSTEM

contains a 2-psi wave at a frequency of about 3500 cps. This high-frequency

wave may represent a transverse mode of instability. In all cases the in-

stability arose spontaneously without external excitation.

According to the thermochemical calculations presented in Appendix G

the value of the specific heat ratio _ is approximately 1.2 for all of the

PU and PBAN propellants. The critical pressure ratio across the exit noz-

zle required to maintain sonic flow at the throat is given by

__E__

pPc - (Y + I) _( -12
a

(6)

For 7 = 1.2, the value of this ratio is 1.77, giving p = 26 psia for
c

standard conditions. The lowest experimental mean pressure ratio was 2.5

with a sinusoidal variation of _ 0.3. Therefore, the observed behavior

cannot be attributed to an unsteady choking and unchoking of the nozzle.

Assuming that the wave is longitudinal in nature (i.e., an organ

pipe oscillation), the average wave speed can be calculated as twice the
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length of the chamber (4 ft) times the measured frequency of the wave:

u _ 4(650) = 2600 ft/sec
W

At first glance, this speed appears to be lower than the speed of sound

one would expect in the hybrid motor. However, two points must be borne

in mind: First, the motor configuration used in these studies consisted

of a 12-in.-long straightening section upstream of the grain. In this

section the temperature, and therefore the speed of sound, is low. Second,

the cool core in the motor itself will tend to decrease the average sonic

speed. The result is that the observed wave speed is a complicated product

of the environment. Future tests involving different chamber lengths will

be carried out to determine the influence of the coupling between chamber

length and propellant response.

The question of fundamental interest is how the propellant response

acts as a driving mechanism to support the wave under certain circumstances,

i.e., with a certain motor diameter at a given oxidizer mass flux. This

question will be investigated in detail during the future phases of the

program.

D. Regression Rate Measurements with Fluorine

In addition to the many experiments described previously with oxygen

as the oxidizer component of the propellant system, a few runs were made

with liquid fluorine as the principal oxidizer with only enough oxygen to

burn the carbon in the binder to CO. Two fuel systems were used, i00 per-

cent PU and 80 percent PU/20 percent AI. The objective of these experi-

ments was to compare the low-pressure regression rate behavior of the

fluorine propellant system with that of the oxygen propellant system.

The total number of fluorine runs was limited by the operating costs of

the cryogenic system.
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A photograph of the test apparatus used in the fluorine runs is in-

cluded as Fig. 22. The dewar flask contains a liquid nitrogen bath in

which all componentsof the fluorine system tip to the injector face are

contained. Figure 23 showsthe internal assembly, including the fluorine

tank that is pressurized by helium and the coil that is used to liquify

the fluorine. The injector consists of a simple central hole (0.055 in.

in diameter) for the fluorine with a coaxial annulus (0.085 in. clearance)

for the oxygen. Figure 24 is a diagram of the injector. The entire as-

sembly up to but not including the pneumatic actuators for the valves is

immersedin liquid nitrogen. Figure 25 is a schematic diagram of the

fluorine system. The liquid fluorine, pressurized with gaseous helium

is metered through a cavitating venturi. The injector is prechilled with

FIG. 22 FLUORINE HYBRID SYSTEM ASSEMBLY
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FIG. 23 INTERNAL ASSEMBLY OF FLUORINE SYSTEM

liquid nitrogen and the nozzle is cooled with circulating water. Note

that no flow-straightening section such as that used in the tests with

gaseous oxygen is required upstream of the grain because the rapid evapora-

tion and expansion of the fluorine fills the inlet section uniformly.

Weight loss data obtained from aluminized PU grains (0 and 20 percent

AI), are given in Figs. 26 and 27. The ratio of fluorine to oxygen was

approximately 3:1; only enough oxygen was used to convert the carbon in

the binder to carbon monoxide. Runs were made for 3 and 6 seconds in-

stead of the 5 and I0 seconds used in the oxygen case to limit the total

heat transfer back to the cryogenic system. Also shown in the figures

is the transport-limited regression rate calculated with the hybrid

36



FLUORINE

OXYGEN m]_

flJJ

f/f'j

f//J

f//J

f//#

f//#
f//J

f_h

f_J

f_J

_181"

0.055" _-

0,266"

3.1;:5"

G&- E638-111

FIG. 24 INJECTOR USED WITH THE FLUORINE SYSTEM

computer code. It can be seen that the data at 50 psia and above agree

reasonably well with the calculated regression rates, while the data in

the vicinity of 20 psia tend to fall below the calculated values.

The 50 psia data point in the 100 percent PU system and the 20 psia

data point in the 80 percent PU/20 percent A1 system seem to be higher

than the remaining points; unfortunately time was not available to repeat

these runs but additional data will be obtained during future phases of

the program. In general, the departure of the regression rate from the

transport-limited value begins at a lower pressure with fluorine than

with oxygen; a direct comparison is made in a later section.
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g. Regression Rate Measurements with Nitrogen Tetroxide

The larger 5-in.-diameter motor configuration has been assembled and

a limited amount of initial data has been accumulated with nitrogen tetrox-

ide (N204) used as the oxidizing species with I00 percent PU grains. A

photograph of the motor assembly is given as Fig. 28. Ignition is accom-

plished with the injection of hydrozene (N2H 4) during the first second of

operation. The vortex injector that was used is shown in detail in Fig. 29.

N204 is injected in a vortical pattern through eight holes of 0.0595 in.

in diameter; the swirling flow impinges on the wall of the injector and

breaks up into a fine mist. Figure 30 is a photograph of a typical water

spray pattern. It is essential to obtain good mechanical breakup of the

spray pattern in a noncryogenic system such as this; the vortex injector

FIG. 28 N204 HYBRID SYSTEM ASSEMBLY

41



w

- _li N2 H4

3" _ _IGNITION ONLY)

I

II

GA- 6638- 23

FIG. 29 INJECTOR USED WITH THE N204 HYBRID SYSTEM

FIG. 30 WATER SPRAY PATTERN FROM N204 INJECTOR

42



works very well from this point of view. A schematic of the complete

flow control system is presented as Fig. 31.

During the first year of the program the objective of the N204 studies

was merely to design and check out the system. It wlll be very useful

in the study of low-frequency instabilities associated with droplet vapor-

ization lags. The larger slze of the motor also makes it valuable for
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FIG. 31 SCHEMATIC OF N204 FLOW SYSTEM
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scaling tests. Data obtained from two successive runs on one motor are

shown in Figs. 32 and 33. The lower pressure was I00 psia (6.8 atm) at

which the regression rate had fallen to about 0.8 of its asymptotic high-

pressure value when oxygen was used as the oxidizer. In this case the

decrease appears to be less than that, but more data are required to es-

tablish the actual dependence.
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WEIGHT LOSS OF A PURE PU GRAIN BURNED WITH N204

(D o = 2.8 in.)
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F. Experiments with an Orifice in the Grain

To gain additional information about the spontaneous instability de-

scribed earlier, several PU grains were fired with graphite orifices cast

in place one-quarter of the way down the grain from the head end. The

initial internal diameter of the grain was 1.5 in. and the orifice diameter

chosen was 0.75 in., giving a constriction ratio of 4. Figure 34 is a
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FIG. 34 AN ORIFICE INSTALLED IN A PU GRAIN

photograph of an orifice in place. Oxygen was used as the oxidizer in

these tests.

Two results were of interest in these tests--the effect of the orifice

on the weight loss (or regression rate) and its effect on the observed in-

stability wave. Weight loss data are shown in Fig. 35. It can be seen

that the overall effect of the orifice is to increase the burning rate by

at least 50 percent. The burning rate/pressure dependence, however, is

similar to that observed in the system without the orifice, indicating that

the effect of the orifice is one of gross turbulent mixing and is not a

direct influence on the chemical kinetics.

The spontaneous appearance of an instability wave, similar to that

illustrated in Figs. 25 and 26, was observed even with the orifice in

place. The results are shown in Fig. 36. The frequency of the wave is

approximately 510 cps, compared to the 650 cps recorded earlier without

the orifice. The amplitude of the wave is somewhat larger at the lowest
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mean pressure, but is smaller at the highest pressure, compared to the re-

sults obtained without an orifice, Other investigators s have used orifices

to suppress the low-frequency instability associated with droplet vaporiza-

tion lags; it is apparent that this device has little effect on the present

acoustic mode of instability. Further investigation will be carried out

as the program continues.
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FIG. 36 SPONTANEOUS INSTABILITY OBSERVED

WITH AN ORIFICE IN THE GRAIN

(Pure PU)
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G. Slab Burner Experiments

A small-scale slab burner, depicted in Fig. 37, has been constructed

and used to obtain initial schlieren photographs of the hybrid combustion

process as an aid to the parallel theoretical effort. The inlet to the

burner contains a flow-straightening section to assure smooth flow condi-

tions in the test section. Glass windows are provided in the 2 in. by 2 in. test

section. _vo schlieren photographs of the combustion zone over a Ple×iglas

slab obtained at two pressure levels are included as Fig. 38. The flow is

from right to left, and the schlieren light has been blocked off at the

left edge of the picture to show the luminosity of the flame zone. For

these tests the Reynolds number was approximately 1.5 x 105/in. Note that

the position of the flame zone, as determined from both the it_minosity and

the change in the density derivative observed on the schlieren picture,

is approximately i0 to 15 percent of the total boundary layer thickness

away from the wall. This result agrees with previous measurements obtained

FIG. 37 SMALL-SCALE SLAB BURNER
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2in.

i
FIG. 38 SCHLIEREN PHOTOGRAPHS OF A BURNING PLEXIGLAS SLAB

at atmospheric pressure. I Note also that the flame zone is much thicker

at low pressure where kinetics play an important role. The two pictures

2
shown here were obtained at an oxidizer mass flux of 0.I ib/in. -sec.

Future studies will consider other propellants, other oxidizer mass fluxes,

and additional levels of pressure. The observed position and thickness of

the flame zone will be used to aid in the theoretical interpretation of

combustion in the low-pressure regime.
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H. Experiments in the Combustion Simulator

An ultimate goal of this program is to develop a theoretical descrip-

tion of the hybrid combustion instability mechanism, so that unstable burn-

ing can be predicted to a reasonable degree. It is quite certain that this

mechanism involves a complicated interaction between the turbulence struc-

ture of the boundary layer and the reaction process. Therefore, to develop

a realistic model it will be necessary to obtain some experimental data

that help to reveal the real nature of the coupling mechanism. Past ex-

perience has shown that it is virtually impossible to obtain such data in

slab burners or laboratory motors. For reliable measurements a technique

is required that accurately simulates hybrid combustion but provides con-

trolled burning conditions and a fixed solid/gas interface for spatial

reference. To fill this requirement, a wind tunnel having a test section

7 in. by 7 in. in cross-section which contains a 6-in.-wide by 30-in.-

long porous section in the upper wall has been built with Institute funds.

The design incorporates honeycomb and screens in the settling chamber,

followed by a 10:1 contraction ratio, to ensure smooth flow conditions in

the free-stream of the test section. The similator, shown in Fig. 39,

operates near atmospheric pressure. The size of the tunnel was dictated

by the desire to obtain a thick enough boundary layer over the porous sec-

tion to allow accurate probing of the layer. A mixture of hydrogen and

nitrogen is injected as the fuel through the porous section for the com-

bustion experiments. This fuel is used because of the wide flammability

limits of the hydrogen-air flame which make it possible to vary the maximum

temperature in the boundary layer over wide limits. The significance of

this point will be discussed later. The boundary layer thickness which

is obtained is approximately two inches, depending on the rate of wall

mass injection. The test section has a moveable lower wall so that a wide

range of axial pressure gradients can be imposed. The value of the simu-

lator is that it allows detailed diagnostic measurements to be carried out
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FIG. 39 HYBRID COMBUSTION SIMULATOR

in a relatively thick, burning, turbulent boundary layer over a stationary

(i.e._ nonregressive) surface.

The theoretical analysis presented earlier requires as an input an

estimate of the rms turbulence level in the presence of the flame zone.

The functional dependence of tile turbulence level on such parameters as

mass flux, Reynolds number, and mass transfer number is of primary
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importance in attaining a general understanding of the process. Current

results, which are discussed in detail in the next section of this report,

indicate that good agreement is obtained between the theoretical and ex-

perimental regression rate/pressure dependence, but that the mass flux

dependence is less satisfactory.

Earlier turbulence measurements in a similar apparatus 2° showed a

marked interaction between the flame zone and the turbulent structure,

even though those measurements were restricted by the apparatus to a thin

region near the wall. The indication to be gained is that further experi-

ments closer to the flame zone with more sophisticated instrumentation will

be required before any real understanding of the interaction is attained.

For this reason, a constant-temperature hot wire anemometer, capable of

being used with cooled probes, is being purchased for use during the second

year of the program.

Because hot wire measurements are required to define the fluctuation

parameters of interest, only a limited number of experiments, consisting

of temperature profile measurements, were carried out in the simulator

during the first year's effort. Temperature profiles obtained in a zero-

pressure gradient flow at two values of the mass transfer number B are

shown in Fig. 40.

Of particular interest is the observed change in the profile at a

fixed value of B as the maximum temperature is reduced. This reduction

is achieved by changing the proportion of hydrogen in the hydrogen-nitrogen

fuel mixture injected through the porous plate. For the present experi-

ments at B = 7.2 the reduction in maximum temperature from 950°C to 730°C

was achieved by reducing the mass fraction of hydrogen in the incoming

mixture from 4 to 3.5 percent. As the temperature is lowered the flame

zone broadens considerably. From the point of view of the effect on

turbulence structure in the boundary layer, such behavior simulates the
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observed effects in the pressure-sensitive regime wherein the flame zone

thickness grows as chemical kinetic processes begin to exert an influence.

Turbulence measurements under the two conditions shown would help to es-

tablish the dependence of the characteristic mixing time on the flame zone

thickness and heat release distribution.

Also shown in Fig, 40 is a profile obtained at B = 12.9. Note that

this profile nearly matches the high-temperature profile for B = 7.2.

Turbulence measurements with the higher rate of wall mass injection would

also be valuable as an aid to the theoretical analysis of turbulent mixing

and combustion. Such experiments are planned for the second phase of the

program.

54



V. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

A complete synopsis of the experimental mean regression rate data is

presented in Figs. 41 and 42 for the PU-oxygen and PBAN-oxygen propellant

systems respectively. The results are presented as the mean regression

rate over 5 sec of operation versus the mean pressure in logarithmic co-

ordinates. The tests encompass three types: (i) constant oxidizer flow

rate, constant nozzle area; (2) constant oxidizer flow rate, variable

nozzle area; and (3) variable oxidizer flow rate, constant nozzle area.

For the variable tests, the mean regression rate is plotted versus the

mean pressure.

First, it is observed from Figs. 41 and 42 that the presence of metal

loading does not materially affect the observed pressure sensitivity when

the results are presented in terms of the ratio r/r . (It should be noted

that r for the 40 percent aluminum-loaded systems is approximately twice

that for the systems with no aluminum.) Also, within the scatter of the

data, which seems to increase somewhat as the pressure is lowered, the

variable mass flux and nozzle area tests (which both induced pressure vari-

ations) gave results that are consistent with each other and with the re-

sults from tests with constant conditions.

Also shown in the figures are theoretical curves for the I00 percent

binder and the 60 percent binder/40 percent aluminum fuel systems. These

curves have been generated by assuming that tl/T = 1 at 9 arm, n = 2, and

Ef = 60 kcal/mole. The slight difference in the two curves at low pressure

stems from the slightly different behavior of flame temperature with pres-

sure for the two systems (see Appendix G). For comparison, the least-

square-error line through the data points is also shown.
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As shown in Section III, the exact choice of gas-phase activation

energy is not critical to the calculated value of regression rate ratio,

whereas the choice of gas-phase order n has a sizeable effect. The present

choice of n = 2 gives very good agreement between the theory and the least-

square-error curve through the data. This value of n implies that the pre-

ponderance of heat release takes place in bimolecular reactions, as would

be expected in a hydrogen/carbon/oxygen gas-phase flame.

The data shown in Figs. 41 and 42 were obtained at an oxidizer mass

2
flux of 0.I ib/in. -sec. The data of Smoot and Price 9'I° show a similar

dependence of regression rate on pressure at this mass flux and indicate

further that the length ratio _i/_2 in Eq. 5 is a function of mass flux.

This behavior is demonstrated by the data shown in Fig. 43. At high

values of oxidizer mass flux and a fixed pressure, the analysis predicts

0.4
a regression rate proportional to G while the experimental regression

rate becomes independent of the mass flux. It is not surprising that the

unknown length ratio is some function of the mass flux because the trans-

port of oxidizer through the boundary layer is a function of G. Further

experiments at different values of mass flux must be carried out to settle

this point. It is certainly true, however, that the theoretical prediction

at a fixed mass flux agrees remarkably well with the data.

The results from the test firings with fluorine are shown in Fig. 4,1.

In this case the critical pressure, at which the parameter @ is unity, is

considerably lower than in the oxygen case, being about 2.25 atm instead

of 9 atm (the theoretical curve for the oxygen system is shown for com-

parison). This behavior reflects the greater reactivity of fluorine com-

pared to oxygen, thereby lowering the pressure threshold at which chemical

kinetic processes begin to exert an influence. This implies that fluorine

systems are less likely to exhibit acoustic instability; this point will

be investigated as the program proceeds.
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VI. CONCLUSIONS AND RECOMMENDATIONS

During the past year a major effort has been made to characterize the

behavior, both experimentally and theoretically, of typical hybrid pro-

pellant systems in the regime where the regression rate is pressure-

dependent. The occurrence of a pressure dependence leads to the strong

possibility of an acoustic instability, arising through the response of

the regression rate to pressure perturbations. To obtain a mathematical

model of the response function, it is first necessary to understand the

steady-state pressure-sensitive behavior of hybrid propellants.

Two binders were chosen for the experimental investigation--cleanly

gasifying PU and charring PBAN to determine whether different surface

kinetics play a first-order role in the combustion process. Aluminum

loadings of 0, 20, and 40 percent were employed with both binder systems

to ascertain the role of radiation in the pressure-sensitive regime. Oxy-

gen, fluorine, and nitrogen tetroxide were used as oxidizers to help es-

tablish the role of oxidizer reactivity in the combustion process.

The main results of the first year's effort can be summarized as

follows:

I,

2 .

The regression rate/pressure dependence observed at low pressures

is independent of binder pyrolysis characteristics and aluminum

loading for a given oxidizer.

A noticeable decrease is observed in the regression rates of PU

and PBAN fuels below 10 atm when oxygen is used as the oxidizer

and below 2.5 atm when fluorine is used. These values pertain to

an oxidizer mass flux of 0.I ib/in.2-sec and would decrease with

increasing mass flux. The lower threshold pressure for fluorine

is a consequence of its generally greater reactivity,
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3 , A relatively simple analytical model based on the wrinkled-flame-

sheet turbulent flame theory has been developed. The model agrees

well with the data obtained at a fixed oxidizer mass flux. Modi-

fications are needed to improve the description of variable mass

flux conditions.

4. A spontaneous longitudinal instability was observed to develop

under certain conditions of diameter and mass flux. The presence

of this wave is related to the ability of the regression rate to

respond to a pressure perturbation of the given frequency. The

wave was virtually unaffected by the addition of an orifice in

the grain.

5 . Experiments with a pulsed oxidizer flow showed a greater varia-

tion in the chamber pressure than could be calculated by assuming

a quasi-steady regression rate. This result indicates a propel-

lant response of the kind that arises in unstable combustion.

The pulsed flow also acted to damp the higher frequency spontan-

eous oscillation.

6 , Schlieren photographs obtained from the slab burner showed that

the combustion zone in the turbulent boundary layer is much

thicker at lower pressure where chemical kinetics exert a sig-

nificant influence than at high pressure.

During the second phase of the study, additional regression rate data

will be obtained at other values of the oxidizer mass flux to provide scal-

ing information for further theoretical development. Longitudinal dis-

turbances will be deliberately introduced into the chamber by firing an

external powder pulse to enable a study of their growth and decay under

different environmental conditions and to shed light upon previously ob-

served spontaneous waves.

A perturbation analysis will be carried out on the steady-state model

to obtain an expression for the acoustic admittance of the burning turbu-

lent boundary. These theoretical studies will also be supported by addi-

tional experiments in the slab burner and the wind tunnel combustion simu-

lator.
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Appendix A

DIFFUSION-LIMITED THEORY OF STEADY-STATE HYBRID COMBUSTION

In the steady state, all of the heat transferred to the solid is used

in vaporizing the solid material, Under these conditions the heat trans-

ferred to the surface is balanced by the mass flow rate of fuel times the

total heat of gasification:

Qw = mf h v = pf _ h (A-l)
v

The heat of gasification h is composed of the latent heat of vaporization
v

plus the heat required to raise the temperature of the solid from ambient

conditions deep in the grain up to the surface temperature.

The total heat transfer is generally composed of convective and radi-

ative parts. The convective heat transfer can be directly characterized

by the semiempirical theories which are available, whereas a description

of the radiative transfer relies currently upon an empirical radiation

coefficient, as will be discussed below.

Convective Heat Transfer

The convective heat transfer at the surface is governed by the con-

duction equation:

k
= - Cp

\

5h_ = CHObUb Ah
_Y w/

(A-2)

where the subscript b refers to conditions at the flame. This equation

serves to define a Stanton number C which is based upon the sensible
H

enthalpy difference between the flame and the wall [_h = (CpT) b - (c T) _.p w
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Equations A-I and A-2 can be combined to give an equation for the regres-

sion rate:

Ah

0fr = CHPbUb _ -

V

(A-3)

It is convenient to evaluate the Stanton number in terms of the skin

friction coefficient for which experimental data and well-documented em-

pirical expressions are available. For a nonunity Prandtl number but a

unity Lewis number, the heat transfer in the boundary layer is related to

the shear Stress by

T

_h/_y _u/by

-0.67
Pr (A-4)

Since Q/Q = T/T from Eq. 4, for a constant Prandtl number Eq. A-4 may
W W

be integrated between the surface and the combustion zone to yield

T

W W

Ah u
b

-0.67
Pr (A-5)

Dividing by PbUb and using the usual definition of the skin friction co-

, = Tw/PeUe 2, is related to cf/2 byefficient cf/2 C H

2

cf -0.67 PeUe
C - Pr (A-6)

H 2 2

PbUb

If, in addition, a mass transfer number B is defined by

U

e hh

u h
b v

the regression rate Eq. A-3 becomes for a unity Lewis number:

(A-7)

* The present treatment may be easily extended to the case of Le _ 1.

Appropriate corrections are discussed by Lees. 14
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--_f Pr _0"67 B (A-8)
Of _" = PeUe 2

The mass transfer number B may be regarded as a thermodynamic con-

stant that characterizes the propellants, since the value of B is deter-

mined by physical properties of the gas-phase and solid-phase components.

Also, since B _ a Pr -0"67 B is the similarity parameter of a boundary layer

with mass injection, the velocity profiles will have a similar shape every-

where in the boundary layer if B' is constant. 1 In a turbulent boundary

layer, Pr is very near to unity so that B s and B are not just proportional

but equal for practical purposes. Thus, B really plays a dual role as a

thermochemical parameter and as a boundary layer flow parameter.

To put Eq. A-1 in a useful form, it is necessary to evaluate the skin

friction coefficient c for a turbulent boundary layer with mass injection
f

and combustion. The skin friction coefficient of an incompressible tur-

bulent boundary layer is given by _1

C
f

o -0.2
- 0.03 Re (A-9)

2 x

It has been shown l,_ that the effect of mass injection upon the friction

coefficient can be expressed by

C
f

C

f
O

j08113Bs4B2]_n(l + B') [ + 1____: + Ii

B S t 2
B

(1 + B')<1 + -_-)

0.2

(A-IO)

In the range 5 < B _ < 100, which corresponds to typical hybrid operation,

Eq. 10 is adequately represented by the simpler formula:

C
f

_= 1.2B

cf
0

t-O .77
(A-f1)
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The presence of combustion manifests itself upon the skin friction coef-

ficient by producing a variable property boundary layer. Variable property

effects have been analyzed by many investigators, including Mager, 23

Burggraf, 24 and Crocco. 25 Marxman 6 has shown that the resulting skin

friction correction appears as a multiplying density ratio of the form

_/Pe 0.6( ) , where p is a suitably defined reference density. For most

hybrid propellants of interest _/Pe can be taken as unity to a good ap-

proximation. 6

The final expression for the regression rate with convective heat

transfer alone is

= )0.6 10.23 -0.2
pf_ O.036G(P/pe B Re (A-12)

X

A notable fact revealed by Eq. A-12 is the strong coupling between the

convective heat transfer and the mass injection rate which manifests it-

self in the small power on B t. This implies that large changes in either

the heat of reaction (i.e., Ah) or the heat of gasification h will only
v

induce small changes in the regression rate.

Radiative Heat Transfer

The heat transfer by radiation is formulated by analogy with an

equilibrium flow, even though nonequilibrium conditions certainly exist

in the hybrid boundary layer. This is done because little is known about

nonequilibrium radiation. In this case

(%4 4)Qr =_ _ e
w g

(A-13)

where the parameter ¢ represents the emissivity of the radiating field.
g

4 4
In all practical cases T << T and can therefore be neglected. A new

W r

formulation for e is given in Appendix B.
g
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It has been showne that the convective and radiative heat transfer

cannot be directly addedbecause of the coupling that exists between the

convective heat transfer and the mass injection rate. The energy of radia-

tion tends to increase the rate of fuel vaporization, and this increase,

in turn, tends to decrease the rate of convective heat transfer to the

wall. The resulting trade-off can be expressed by _

pf9 c r c_ + (A-14)

h v

where Q is the convective heat transfer that would be present in the ab-
C

Qr / (such as would occur in asence of radiation. For small values of Qc

typical hybrid with low metal loading in the grain), the trade-off between

the terms is nearly exact, and _ can be calculated with little error by

using Q alone.
C

Treatment of Particle Loading in the Grain

The preceding section considered the effect of radiation on the hybrid

burning rate. Many systems that contain an appreciable metal loading in

the fuel exhibit a significant radiative heat transfer to the grain be-

cause of the presence of solid combustion products. Systems also exist

that have a high particle loading in the surface but exhibit little radi-

ation because the products of combustion are gaseous. Therefore, it is

necessary to determine the effect of particle loading on the regression

rate of both radiative and nonradiative systems.

It can be shown that the presence of particles in the flow has a

negligible direct effect on the shear stress distribution or velocity

profile shape in the boundary layer. _e From this, one can infer that the

variation of cf/Cfo with surface injection should also be unaffected to

first order by the addition of particles. However, it is physically
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apparent that the blocking effect, which reduces cf, should depend upon
only the gas mass addition rate at the surface so long as the particles

occupy negligible volume comparedwith that occupied by the gas, as they

do in any practical application. Based on this assumption, the regression

rate equation should be written in terms of the bulk density of the vapor-

izing component. This can be accomplished by defining an effective heat

of gasification by the equation:

= = c + -- c AT + L (A-15)
Pvhveff Ofhv Pv Pv Pv m v

I K CmAT )= Pv hv b + I----_

This equation describes the fact that the one component is both heated to

the surface temperature and vaporized, while the other component is only

heated. The increase in the effective value of h with increasing metal
v

loading tends to counteract the increase in the surface heat transfer,

which is caused by the surface mass addition. These results indicate that

the regression rate of a grain can be significantly increased by the mere

addition of particles whether or not these particles provide any signifi-

cant radiative heat transfer to the grain. The important grain density

from the standpoint of regression rate is the bulk density of the binder.

Evaluation of the Mass Transfer Number

The mass transfer number B which is a governing parameter in the con-

vective heat transfer equation, can be evaluated according to the scheme

of Marxman. 6 This requires the calculation of both the sensible enthalpy

difference between the flame zone and the regressing surface and the ef-

fective heat of gasification. The latter quantity is given by Eq. A-15.

It can be shown 21 that the sensible enthalpy at the flame zone is equal to
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the heat of reaction per unit mass of propellant (fuel and oxidizer) at

the local mixture ratio which may be taken as three-fourths of the stoi-

chiometric value.

The heat of reaction per unit mass of reactant is given by

Q = Ah=
C

O

_ Ah - _ Ah °
r r p p (A-16)

A sample calculation for the Plexiglas*-oxygen hybrid system would proceed

as follows: The stoichiometric mixture ratio for this system is 1.92.

Assuming that the local O/F ratio at the flame is 1.4, the balanced reaction

is

C H O + 4.37 0 -_ 2.26 CO + 2.74 CO + H 0
582 2 2 2

Then, using standard heats of formation, the heat of reaction per unit

mass is

Q
C

1(-92.8) - 2.26(-26.4) - 2.74(-94.1) - 4(-57.8) 3
= x i0

100 + 4.37 (32)
(A-17)

= 1900 cal/g = 3430 Btu/lb

Assuming the wall temperature is 600°K and the ambient temperature deep

in the grain is 300°K, and using 0.4 cal/g -°K as the specific heat of

the species at the wall,

Ah = 1900 - 0.4(300) = 1780 cal/g (A-18)

Using a value of h of 350 cal/g results in
V

Ah ~
n= 5.1
h

V

* Trademark, Rohm & Haas, Co.
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The mass transfer number B is now related to hh/h by the curve in
v

Fig. A-1 (which is reproduced from Ref. 27). For the example above,

the result is B = 9.3.

Ah

hvef f

FIG. A-1

15

I0

I I I

I I I
5 I0 15 20

B
TA - 6638-

THEORETICAL HYBRID MASS TRANSFER NUMBER
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Appendix B

GAS-PHASE EMISSIVITY

A calculation of gas-phase emissivity can be carried out by begin-

ning with a fundamental description of the radiative process. Consider

the radiation delivered to a cylindrical wall from an annular zone of

high-temperature particles. In a hybrid motor with a cool core the radia-

tive heat transfer comes from this type of annular region. The radiation

delivered to an incremental area dA lying in the x-z plane (see Fig. B-I)

from volume dV is

2 I dV
d _ -

2
4wr

- _ T sin _ cos _ dA (B-I)

where I is the intensity generated per unit volume at the location of dV

and T is the transmissivity of the intervening medium between dV and dA.

dA iN

X-Zx_

y y

dA \

PROJECTION

OF ANGLE

._ Z

(a) GENERAL SPHERICAL COORDINATES (b) ORIENTATION OF RADIATING ANNULUS
TA- _38 - 5

FIG. B-1 COORDINATE SYSTEM FOR CALCULATION OF EMISSIVITY
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Assuming the emissivity of individual particles to be unity,

2 4
I = 4vcr nc_T (B-2)

p r

The transmissivity is obtained by assuming the absorption process to be

of first order; i.e.,

dI
= _I (B-3)dr

where _/ is a constant. The solution is

I -_r
T - - e (B-4)

I
0

A photon of light will be intercepted by any particle whose center lies

within the distance r from the path of the photon. If the particle emis-
P

sivity (absorptivity) is unity, the absorptivity coefficient _ is equal

to the average number of particles encountered per unit path length:

2
y = TTr n (B-5)

P

Using

2
dV = r sin _ dr d_ d_ (B-6)

as the differential volume in spherical coordinates, the above equations

can be combined to give

2
=T_Ir r

2 2 4 p 2
d _ = ffnr T e sin

p r
cos _ dr d_0 d_ dA (n-7)

The gas-phase emissivity is then obtained by integrating over the volume

4
after dividing by _T :

r

2
-q-_r r

2 ! p
g P_

2
sin _ cos _ dr d_ d_ (B-8)
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The integration limits for the integrals of Eq. B-8 can be established
-1

as follows: For _ > _e = sin (R0/R), the r integration can be carried

out directly between r = 0 and the value of r established by the equation

2R cos _ = r sin (B-9)

For _ < _e the r integration must be split into two parts to account for

the fact that no radiation is generated in the cool core. The two regimes

of r integration are given by

O<r<s
1

\

2 2 2 ½ ]
R cos _ - (R 0 - R sin _)

sis

2R cos
<r< = s

- Sl sin _ 2

2R cos

sin B

(B-IO)

The integration over _ proceeds from a lower limit of zero to an upper

limit which is dependent upon the z-coordinate of the end of the annulus

and upon the value of the angle _. At the end of the annulus

-1 2R cos
_= tan i =

z e
e

(B-II)

The final integral must then be multiplied by four to account for all

four quadrants. Using the results above,

2 2(s 2 2 ]
-We _Se -nnr s -_nr - s ) -wnr s

=__ 4 _ 1 e pl p 1 p2 2
- + e - e cos ¢@ sin _ d_ d_0E

J Jg
0 0

+- J O 1 - e cos _ sin _ d_ d%0
_0 e

(B-12)

Because of the nature of the exponential functions in Eq. B-12 the inte-

grals must be evaluated numerically.

The particle number density n that appears in this analysis can be

calculated from 27
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3X K 1 Pe _x r P dx (B-13)n(x) - 4_ 1 - K 3 r_ 0 Pv
pprp g

for a grain containing nonvolatile material, and

3KI 1 Pe x .

n(x) - 4rT 3 m _0 Pv r p dx (B-14)

p prp g

for a completely vaporizing grain. The density Pv is the bulk density of

the vaporizing component of the grain.

An expression similar to Eq. B-12 can be developed to account for

gas-phase radiation in systems that do not produce particulate combustion

products. In this case the absorptivity coefficient _ is proportional to

tile pressure

= GP

where the proportionality constant _ must be obtained experimentally.
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Appendix C

DIFFUSION-LIMITED REGRESSION RATE CALCULATIONS

A computer program based on the work in Appendices A and B was written

in BASIC language for solution at a time-sharing computer terminal. A

complete description of the program, including a sample output format, is

given at the end of this discussion. The regression behavior of circular

cylinders is described, such as those studied experimentally during the

current program.

Theoretical calculations of the mass transfer number for the poly-

urethane (PU) and polybutadiene-acrylic-nitrile (PBAN) binder systems have

been carried out as a function of metal loading, with oxygen considered

as the oxidizer. The results are shown in Fig. C-1.

The gas flow rate m , which enters both the convective heat transfer
g

expression and the expression for the particle number density, must account

I0
CD

9

a
J

T
O

FIG. C-1

I I I I

I I I 1
0,1 0.2 0.3 0.4 0.5

ALUMINUM MASS FRACTION
TA-6G35-2

VARIATION OF MASS TRANSFER NUMBER

WITH ALUMINUM LOADING FOR PU

AND PBAN BINDERS
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for the oxidizer used in the production of particles. It is composed of

the head-end oxidizer flow rate plus the gas evolved from the surface

minus the oxidizer used to form the combustion particles. The resulting

expressions are 27

(  )xo= _ + 1 - r Pv _p dx (C-l)
g o 1-K 0

if particles in the grain produce particulate combustion products,

l X

= m + -- _r pvgP dx (C-2)
g o 1-K 0

if particles in the grain produce only gaseous combustion products, and

= _ + (I - K - fx 0v _Pg o 1 KI_I) 0
dx (C-3)

if a completely vaporizing grain produces particulate combustion products.

The mass of oxidizer consumed in producing the product particles is ac-

counted :for by _ and _i"

The results of regression rate calculations for the hybrid systems

utilized during the current program are shown and discussed in Section IV,

Experimental Studies• It should be emphasized that the analysis embodied

by the computer code described below is restricted to the transport-limited

domain of hybrid combustion wherein chemical kinetics do not exert any

controlling influence.

The inputs required for operation of the program are shown in Fig.

C-2. The equations which are solved can be concisely stated as follows

(Cases I, 2, and 3 referred to below are described in Fig. C-2):

-Qr cQc r
• • "7""

Pvr = pfr (1 - K) - h + Q (C-4)
V C

eff
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WY-FXP IR:35 SF MON 09116168

l(:fl THE" PPflGRAb" FNTITLFD "HY" IS BASED |'PON HVAT-'IFCANSFER

IDI LIt_ITtD HYARIn THEORY. IT CALCIJLATFS THE REGRESSION BE-

I07 HAUIOR OF A CIRCIlLAR TUBE FUEL GRAIN. THE INPL*TS ERICH ARE

103 NECESSARY FBR QPERATION 9F THE PROGRAM ARF DEFINED AS

I0" FOLLBk_S ACCeknlNG TO THE LINE NLIMBF_:_S OF "HY":

105

106

107

if)g

109

I0

It

19.

3

S

6

7

9

Ic, O

191

IP_P

1_.'t

ioz,

l.P. 5

P. 6

97

29

30

31

39_

33

.3,_

3S

.'t6

"_7

38

39

40

,al

z_.3

ztll

_5

za6

za7

4B

za9

50

50 _O--INITIAL INNER DIAM. (IN.)

51 L--LFNC, TH (IN.)

5R DR--3LITER DIAM. (IN.)

53 R --MASS FRACTION OF NON-VCSLATILE SURFACE FiAT'L.

._,_ KI--FASS FRACTION OF VuLATILF SURFAC, F KAT'L.

t','HICH F@RFS PARTICtDLA]F r:uMHIJSTIOt, H_OI)UCTS

55 K2--TOTAL DENSITY OF FUEL GRAIN " (LB/IN3)

56 Ka--FFFFCTIVF HEAT OF GASIFICATION (HTblLB)

57 MO--OXIDIZEF FLOk RA'[F (LBISFC)

(IF MO VARIES,, IT trAY FITHFR tIE REAl) AS

DATA OP DESCRIBED BY AN FOUATION.)

58 PO--CHAKRFR PRFSSt)I_E (PSIA) (SF_ TIfF A_.GVF.)

59 J --CASF NUF:BFR

J=l IF PAPTICLgS IN THr GF'_IN P}-'Obl_O,g

PARTICI'LATF COMBUSIIOm PbODtICTS

J=_ IF PAPlICLFS IN THF GRAIF_ P_3blt¢:F

GASEOUS _,e,_IBUSTI_DN PF-:CaDUC'IS

J=3 IF A CS_PLF]FL'¢ VOLATILF GF,AIN PRODI_CFS

PARTICULt_T_" C(?__RI'STICIN PP_3nI,CT,_

60 i!O--O×IDIZFg TF_'F. AT INLET (OF:)

¢,I I!5--CtB_._I*STION TFMF. AT AN O/F RATIO t','hlf;h IS

3/,a C_F' THF SI'_ICHIgt_FTleI(; VALIIF AT 5 AIF,.

PRFSSUFF (OR)

6z_ CT--GA.q-PFA.qF P.AI_IATI,.hN CONST.

65 Rz'--V, AS._ OF OXII'}IZFF CONSI!t'ED rFP !!NIT KASS ,qF

NCN-VOLATILF SI_I_eFA(?,E t,,AT'L. IN PI_,gF.)t,CING

PAIYTICL'LATF Cf0kBUSTION P_0DDCTS

66 KS--t'_ASS OF OXIDIZER CC)NSI_F_[ _ I_FR UNIT MASS OF

WOI_ATILF SLIPFACF FAT'I.. IN PROhI_CING

PARTICI!LAIF CO_'4_IJ_II_N P_i_F,liCIS

67 CF.--MASS _F PARTICI_L_TF CO_,HIi.']TI_,_ PF'qDI!CqS

F'2PF, F'D PFb' I_NIT NASS OF NON-VoLATILF

_l IRF_ C:,F FAT 'l..

fi9 _'9--FtV, ISSIVITy (ABSGFFTIVITY) OF FI,FL SItWFACF

70 _ --Mr'aSS TRAN.qFFP Nld_RFP

73 KS--DFNSITY OF PARTICI_LATF C'_F_BLISTION PF_DUCTS (LF_/IN3)

77 CP.--BOL:NDARY LAYER DENSITY C0_FCTION FACT_b.

7_ S --O;_IDIZFP VISCOSITY AT TEi-_P, II0 (L_/IN-S_C)

g_ TI--TI_+F INCHF_FN'I EO_ CALCI_L4TIONS (SFC)

_3 Tg.--.gUIT TIFiE (SFC)

8_ T3--TIIv_F INC_I_,*_I.NI " FO_ PRINTOI_T (SFC,)

85 ×I°-DISIANP, F INCRFI*TixlT FOP CALCI_I.t'_'II_NS (X/L)

103 PIIT IN ThE NA_.FS OF THE FUFL AND 0XIDIZFIx flY

TYPING F,G,,

103 PPlNT "P_!t,;","OXY(;F,',I"

FIG, C-2 SUMMARY OF INPUT REQUIRED FOR HYBRID COMPUTER CODE
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11 coo3o( )o8( >
Vef f

-0.2

_:,o+(iK_)ipv r _ D dx
O

0.23

B

(Case i)

(c-5)

X

1
D dx

g o I-K Dvr
77

o

+ _ + (1 - K - K1<I)_g o 1

X

pv _" "J D dx

0

(Case 2)

(Case 3)

(C-6)

* 2
A =- (D- 25 )

p 4

*I26 = 0.21 D

0.21 D (x/5D) 0"8 x £ 5D

x> 5D

4
Q = G g e T

r w g r

(c-7)

(C-8)

(C-9)

4

g
q°e JBe l1; f - e -Tsl

O O

-Y(s2-s 1)

+ e -Ys2) 2- e cos _ sin 13 d_ d_

+-j" 7 l-e-g

qoe o

2
cos q0 sin _ d_ d_ (C-10)

2

_{:nrpp (Cases i and 3) I

(Case 2)
(C-11)

8O



S
1

-1

_e = sin (Ro/R)

-1 2R cos

Be t an Z
e

2 2 2)½R cos _ - (R - R sin
0

2R cos
S --

2 sin

sin 8

(C-12)

(C-13)

0e x

_3vr TT D dx

0

3X K 1
n --

4TT I-K 3

pprp g

3KI i 0e
n = "

4_ 3

pprp g

X

Ov_ _ D dx
0

(Case 1)

(Case 3)
I (C-14)

T _ 2Tf/3 (C-15)r

K
h = h +-- c (T - T )

Vef f v b I-K m w o

(C-16)

The general solution proceeds as follows:

I. Calculate Q /h
C V

eff

2. Calculate
g

3. Calculate n (if required)

4. Calculate Qr

5. Calculate

The details of this computational procedure are shown in the printout of

the computer code given in Fig. C-3.

81



pY I-_:17 qF t-_O_ 09/16/(.F

z_9 1,_'T =3=0

%r_LF 'l" Fin = 1

51L>-lL=19

_OI_FTh9 => .5

5.q L_T v_:n

F,I: LFT KI=O

55 I.FT kP=3.f'QI06F-P

k .¢,I r."'1-IX14= A 5_rl

'-,71. F ] f',C.= .tit- A

Sk I_FT pri=Pnci

59 1.5 T J=P

At- I__'T Ir(1=1(4)

AI I FT 1{5=39,3z:.'1 .P

(-,PI,FTII9=I'5e(1 +3.33F--z_*(P(!-75))

6,3 LFT l-6:3

64 LF.T C7=r).Q(_3

65, I.V7 l<a=c..A_,v,

66 LFT Kb=N

A7 LFT C.,_=l._-,t'-_

{,f-, LVT 1:1=3.3071--15

&9 LFT I-P=. q

70 LF T R=9.t',

"11 _"plV D(IOC,)

7P !;Ilrv ;_(101-,)

73 [VT Vr.,.=O.IZ_37

7Z4 LFT C6:(3*O.SZ_Fm)I(/4iKb l_6)

75 LFT dl=l

76 LFT CI=C'.CI"_A

77 LF'[ C2=I

7P LFI S:I .OP F-6

79 LF] C,q=(£/L)tI).:,

£n LFT r5:3,l_159

Ir.t LFT Cz=ES/zJ

F," LI- "l TI =iT).:)_

t-;_ LFT ro=l_l

£-', I,p'I T3=.5

1.5 L_3 >l=O.o°

£7 LET b=n

2_ LFT 1_1 =P*I_P/3

9P Pv INI

9¢, LF'[ I4:IN7(.I/_'1 +1/9)

(Hi I-_P 1 _]

P,I PI-'INT "F'l t:L","C_AI!)IZI-I_"

flj PF IN] "}'1"', "DP-I:9"

0¢', i'P [NI

11 PFINT "INITI6L C¢:_NI)."

lP PPINT

1_ PFINT "I,IAV.","LFNG'IH","r,FN%IT'r","FFF. H-SIPS-\;"

]A HI, tNT r_ll,l.,_.o,F3

1 7 PFINT

1£: PPIN] "_qFF".,"PFF.%S.","C,;'ID. PLOt'","INLFI TF("P.","FLAP, F 7FI"F."

-°D PPlNT R,}'C,MO,!IO,t ;{

P t i-'i_ IX7

99 P_I_T '°Rnl;. "lFi_} .","4._-_; CHN%'[.","I,&I_L _E_e,:;!:k]. ''

'_t, I'PTN'I 1_1 ,c7,ro

05 i'F I_"'i -

FIG. C-3 HYBRID REGRESSION RATE COMPUTER CODE
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IP+ FFI'NT "P'FTtXL PCT.","r+o./:T. P+C'I.".,"ZF+IA"*"_I"I+t+-I ''+'''L_P.'il'A''

19_ PqlNT K.,,.KI.oK",I+5,Cb

IP9 _#lN1

130 PF.'TNT "I_FL-]","DFL-_./L","PRIN'I TIKF",":-II:II IIKF","CASF"

39 PRINT TI,XI,T3,I'P,J

34 PR INT

•_5 PRINT

J,(3 LFT Q&=C|*CT+C3*C_)tO,23

"S LFT T_=O

_7 LFT T5=O

50 LFT T=O

_5 LFT X=XI

56 LFT I=l

57 LFT II--I_

¢++C LFT P=FC

/%5 IF T>n THFN 175

70 L FT D(1)=DO

75 LFT R3=(_*L)/(5*D(1))

_0 IF R3<=I THFN 190

B'I IF P3>5 THF'K RnO

F(_ IF" R3>I THFN 710

90 LFT F=D(1)*(I-O-PI*(R3)tO,B)

95 LFT I]=I;0

70(] I+FT F=n(1)+C]-O,P])

#05 LF1 11=I!2

206 Ge TO P2C_

olC3 LFT F=D(I)*(I-C.#I)

915 LF+I I+=I!O+((I;_-IPC)/+)+(|,'3-t )

P?O LFT _=Ca+(F)tP

?.°5 LFT g|:_A+:CX)t(-(],p)+C_/A)tC),W.

P3() LFT 03=C5*qI*DO.*XI*L

_5 LFT PI=.�I/(_P._(I-K))

oz, O IF ,1=1 TI.41:'N ,'-'55

or'5 IF J=? THFN 345

#50 IF U=] THFN 300

#55 IF l>l TPFN PF, O

_(,0 LFT _=r_P+(I-K*Ka/CI-K))*n3

26,1 LFT ,vI=KO+'_3*I/(I-IK)

")65 LFT q5=Q3

970 LFT _(I)--C(,*CF*K/(I-K)*PO/I"_I/'v*;)3*(P3)I(-O .h)

971 GO T@ ,366

980 LFT ,_:=_+Cl-XW, Kz,/(I-k))*;34

P/41 LFT ki=_l +")v'*l/(|-H)

9_85 IF '_3>1 ]H_'N ?95

290 LFT N(1)=C6*P._*i_/(l-K)*r[)/i_il/(v*qh*(l"3) _('[}-8)

9_95 LFT N(1)=C6*CF_*K/CI-_)*_()IIP*I/'_*:_5

3DO IF l>l ThFN 395

305 LFT _,'=VD+(I-KI-Kl*I_5):¢,33

30_, LF] _']=Fn÷rl3

31(1 I.FT +q5=')3

315 LFT N(])=CG+KI:_I'fl/t_+]/,v++h'{:I:(F'3)I'(-O "_f')

3IA C_['_ "10:146

,+I#5 L_'T V=t'_+(I-_I-KI*+5)*'} z_

396 LF'] P't=MI+Q/,

330 IF !73>1 THFN 340

,335 LFT NCI)=C6*KI*F'O/I_*l/_.*'Ib*(h"_) t(-Q,F)

33A G�) TO 3A6

3v,C) I._'T Nft)=C6*Kl*i'O/l_*l/i,:eq5

FIG. C-3 Continued
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_z;k IF 1>1tHF,ki3(,N
35NI.FTM=i4f_+(l/(I-K))l-)3
351 LFTF'I=,_-
355 LF] N(I)=C7*_'(I

35_ r.n T_ rt6_

,36,N LI:q Y=P+(I/(I-k))*:).,,

_41 LFT MI=X

36,5 EFT N(I)=C7*i'O

36,(- IF Jl=? "I'FF,'_ 371

36;< I.T:T _'P=!'I

370 G_ "[_: 39Q

371 IF j=o TEI:'N 3_-:."

37"3 IF" N(1)>L) THFN 375

37:3 Lf-'T P°=mI

37 _' G_] "l('l 3_J'P

37(_ IF I>_"vlzi THFN "lkP

,q7F IF I=I| -[HF\I :]l',f)

;I}-:N t';q TO q_ 7

:3},,0 IF I ='i 5 IF,l'",2 _,ttfl

'3[,S{ (:(' lq 3_7

3P,', ]IF t>r_:_Iz, t_41-",_ ;{t-7

3P,5 c-('_ Tu' 375

3F7 I.I- T ].o : _ | _-F')/I-,"_ _[ _{ :+"( I I ] ) t n

3F_ LFT #.°=-_I*(3;)/)]+F;.i-(- )P/ _1 ))/(}<9*(I-K))

390 LFT O-"=CS*!49*(1-14):_;h"_*D(I)*;_;I_<L

391 LFT ']5=l)5+I)zl

395 IF I=I1 T)-:FN 495

400 l. rT D(I)=D(I)+9_t:P*T1

aOI IF D('T) :'r_9 TpI-N 7V_

/_05 IV X_P.995 'IHPN z_q5

Z_lO LFT I=I+l

z_15 EFT X=×+Yl

z_pp c,n Tq 14S

a95 IF T=(1 THFN 450

430 I.FT /"3=(,"1 +V?)/P-MO

z,35 LFT V:t"+._'3_k-fl

a4P IF T=Tz, TNFN 455

z,z,4 LFT T=T*'.rl

4a(, IF T>IR IptrN f-fi0

4z,_ C,N ]0 155

45(] LFT [,P=t,]

z,£p IF Jl=P THFN 455

z_53 LFT Jl=P

4s4 _,:; rr: t_,h
zrSb t_t,' I NT

_(_O P!_I,\i'[ ,,_;r:. I_FL-P","_.T. LOS_;","f:AS FLI)'."".'"I(!ITAL FLOt"."G-O"

/,41 I I:'T ri,_=('.,/(c'4.lKO,l_)+(Df))'tP)i(i.5

/.AS P_cIN] (r_A-l)N)/f','.'*45.'_,f,,tv,,t, l,f,.Ol(f;4*(l_6)i2)

470 P_ l NI

z47| PPINT

z_75 LFT T=T+TI

47A I.F't" ]Z,=TX,+T':I

4_"O IF T>TP TNr\t kOO

z;go _'_ T _ !55

z_9S IF T=T4 7FI-N '.-4:6_

496, I F] I3(I)=F_( l)+C'_#'P'l 1

5('0 I rT 11=I1+14

505 f;,;) TC a(.5

5o(. 11" .11=9 lhF',. _1 c'

FIG. C-3 Continued
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5P.,m Oc_ T_I 405

510 IF" II=I4 THFN 5_0

51_ _0 TO 535

5_ PRI'NT "TIf_F ''

5__5 PRINT T

5_6 PPINT

530 PRINT "r)I._TANCF","RFG, R&TI"%"DrL-M"_"&RIr&"e"FMI_JVITY"

531 PRINT

535 PPINT x,P_,(r_(1)-rlO)/2J, Cae(D(1))t__._3

536 PRINT "--",P!,"--"_Ca_(F)ttt

5z_O LFl D(IIm_fI}*P.*_P*TI

5"1 IF DfI):.D_ THFN 795

5z_5 LFT II=I1÷I_

550 GO TO A05

590. LFT TS=Th*C'>*T.3)

AO0 LFT E'=h(I)/2

411SLFTF_O=;_-O.¢_5

410 LFT Y|=3.1"159/30

415 LFT Y2=ATN(I/(()_*_)/fRO*RO)-I)t(0.5))

4?5 LFT F.q--n

_.31 LFT J5---I

(-33 LFT kg=l

43z_ LFT Y=YI/IO0

625 LFT Z=3.14159/9

640 LFT j4=l

6-'5 I_FT Y3=O*P*e,0SfY)

64_ IF Y>Y2 T)_FN &50

6z_ LrT S3=(Y3/?-(PO*RO-R,R,(SIN(Y))_a)_(O.5))/SIN(Z)

45n LFT X3=Ja*XI_L

455 I,FT S-"=Y3tSINfZ)

(,6tq IF y<yo THFN 466

66_ I.FT k9=O

66,'! LFT $3=0

664 IF J5=l THFN 57C)

6_,7 LFT S.%:Kg*FXPf-N( I-J4)*S3)-Kg*EXP(-N(I-J4}a(S_-S3) )+EXP(-N(I-Ja)*S4)

66_- GO TO 675

4"/0 LFT S5=Kg*F×P(-N(I+Ja)W, S3)-_(9*FXH(-NfI+Ja)W,,(S4-S3))+FXW(-N(X+J_)'I,54)

675 LFT _._=(I-S5)*(SIN(Z))t2*COS(Y)

(,F,P LrT ZI=(Y3*_I*-L)/((X3)tP÷(Y3)tP)

6F5 LFT ._7=S&*ZI*YI*P/3.1a159

490 t, FT F3=F3*STII.a69_

695 LF'I Z=Z-tl

7UC, LFT J,_:Jz *!

7,q1 IF JS=l TI-FN 705

7C "> IF jz_>I THFN 7?0

703 IF Ja="]0 TEFN 720

7_J4 GO T:_ 645

7t'5 IF JZ:>l/>I-I IHFN 720

7<]_ IF Jz_>lO ThFN 790

715 L;C T9 6z_5

7P(l I.t_1" Y=Y+YI

705 IF" Y>3.1v'15919 "IHFN 7_5

7z_O F<,} T:*_ 635

7a5 IF ,J5=2 THFN 750

7a6 LFT ,IS=P

7_ Oe T_ 433

7%Q G: T,_ 3h7

795 PPINT "S}'FCIFIFF_ F)'.TFRN.%I. F,I_4f,F'IFr_ FZCFF[_FD"

PI_P, V,Nr]

FIG. C-3 Concluded
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Results of a typical calculation are shown in Fig. C-4 for a 1-in.

Plexiglas (polymethylmethacrylate) grain. At each position, the regres-

sion rate that would have been obtained in the absence of radiation is

printed out below the total regression rate. In this particular system,

the radiation is so low that it produces little effect on the regression

rate, partly because of the trade-off between radiative and convective

heat transfer. Two port areas are also printed out at each position; the

first is the geometric area and the second is the true flow area that is

the geometric area minus the area occupied by the boundary layer displace-

ment thickness. The flow area must be used in the calculation of the mass

flux which enters the convective heat transfer equation. Results obtained

for other hybrid propellant combinations are given in the main text of this

report.
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Appendix D

DEVELOPMENT OF A MODEL FOR THE PRESSURE-SENSITIVE DOMAIN

At high pressures a thin turbulent diffusion flame is established in

the boundary layer at a position where the local mixture ratio will allow

combustion. Under these conditions the gas-phase reaction rates are large

compared to the turbulent transport rates, and the latter are then the

rate-controlling factors. As the pressure is decreased, the reaction

rates decrease, the flame zone broadens, and the combustion process ap-

proaches that of a premixed turbulent flame; i.e., the combustion time

becomes long compared to the mixing time.

An important point to consider is whether the gross kinetics effect

on the regression rate is caused by the behavior of the heterogeneous sur-

face reactions associated with the decomposition of the solid or by the

behavior of the gas-phase reactions. When gas-phase reaction rates are

high, the mainstream oxidizer mass fraction must be low between the flame

zone and the wall, because high reaction rates imply a thin flame zone and

consequent effective utilization of the oxidizing species. Thus, in this

case, any heterogeneous reactions at the surface will be controlled by the

diffusion of the small proportion of oxidizing species that is available

to the wall. Since, by Reynolds analogy, the diffusional transport of

mass momentum and energy is governed by the same equation, no correction

to the basic hybrid model is required to cover this case. It can be con-

cluded that the presence of pressure-sensitive heterogeneous reactions

at the gas-solid interface does not explain the observed decrease in re-

gression rates at low pressure.
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The foregoing argument indicates that the gas-phase reaction rates

at low pressure must be examined in order to explain the regression rate

behavior. The physical explanation of the general process is that at

high pressures, the gas-phase reaction rates are fast enough to consume

all of the available material that is being vaporized at the surface. As

the pressure is lowered, however, the gas-phase reaction rates decrease,

and finally a point is reached where the flame cannot efficiently consume

all of the vaporizing material and the local mixture ratio of the flame

begins to shift. This shift in mixture ratio leads to a decrease in heat

release, which in turn decreases the vaporization rate of the surface.

At pressure well below the threshold level where the chemical reaction

time is much longer than the gas-phase mixing time, the flame behavior

approaches that of a premixed flame.

A detailed solution of the complete turbulent boundary layer equations,

involving not only chemical kinetics but also the interaction between the

turbulence mechanismand the combustion process, is obviously beyond the

current scope of our understanding. These considerations naturally lead

to an inquiry into whether the simplified turbulent flame theory developed

in the past for premixed flames2s can be applied to the hybrid case in

which there is a transition from a premixed flame to a diffusion flame as

the pressure increases. An excellent review of the wrinkled-flame-sheet

turbulent flame theory has been given by Karlovitz. 2s

The theory of Karlovitz is a one-dimensional theory; therefore its

applicability to a two-dimensional boundary layer problem must be carefully

considered. The use of a one-dimensional theory as a first approximation

is supported by schlieren photographs, which consistently showthat most

of the heat release takes place very chose to the surface even at low

pressures, l Furthermore, in the vicinity of the surface, a one-dimensional

approximation describes the turbulent transport processes very well, 2°

lending credence to the present approach.
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Application to the problem at hand leads to a description of the re-

gression rate behavior in terms of the ratio t/T, where T is the charac-

teristic mixing time corresponding to turbulent diffusion, and t is the

characteristic reaction time for a premlxed zone of dimensions correspond-

ing to the turbulence scale.

The mean-square displacement of a particle from its original position

by turbulent fluctuations is described by the equation 2e

t

d X2 = 2 u 7 Rt dt (D-l)dt
O

If the correlation function is assumed to be given by

-t/T
R = e (D-2)

t

Eq. D-1 can be evaluated to give the rms displacement:

1 1

(X-_ 2 = u' t 1 - 7

The average flame speed in the gas phase is given by:

(D-3)

S (_ ,, 2T _ T (1 e (D-4)_ - u - - -tl/T)

t I

I

In the mixing (heterogeneous) limit, tl/T-_0 and S_u ' where u is a charac-

teristic turbulent velocity in the combustion zone. Since the turbulent

flame speed must be compatible with the regression rate at the wall, the

regression rate ratio is given by

-£ _-

r

l 1

(D-5)
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The remaining task is to express the ratio tl/T in terms of flow parameters

such as pressure and temperature.

From a physical point of view, it is convenient to express the time

ratio in terms of length and velocity ratios as

tl "_1 u t

T uf £2

(D-6)

In Eq. 41, _1 is the distance that the flame front propagates into unburned

gas at the (kinetic) flame speed uf while _2 is a characteristic scale of

turbulence. Using the Denison and Baum formulation 29 for the flame speed

uf and the asymptotic behavior of S to describe u t, the time ratio becomes

-0.2 0.23

tl _1 GRe Bx (D-7)
-- C

n/2 l+n/2

T "_2 p Uf exp (-Ef/2RUf)

The constant C is required to complete the kinetic formulation of u
f

must be determined by comparison with data.

and

The length £2' which can be thought of as related to the integral

scale of turbulence, is probably nearly constant over a wide range of flow

conditions. On the other hand, the length _i could, for example, conceiv-

ably depend upon the mass flux because of changes induced in the relative

availability of fuel and oxidizer in the vicinity of the flame zone. by

changes in the mass flux. At present the disposition of this point must

be left to experiment.
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Appendix E

REGRESSION RATE MEASUREMENTS WITH OXYGEN

The basic components of the 2_-in.-diameter motor that was used to

obtain regression rate measurements in the low-pressure regime are shown

in exploded view in Fig. E-1. A 12-in.-long flow-straightening section

is used upstream of the inlet to the grain to ensure uniform flow condi-

tions. Screens and a porous plate are used at the injector end of the

straightening section to help spread the incoming stream from the injector.

At the grain end of the straightening section, an inlet for propane and a

spark plug are provided as the ignition system.

An existing flow control facility was adapted for the gaseous oxidizers

used in the small-scale tests. The facility was designed for liquid engine

tests with cyrogenic oxidizers and therefore was constructed of 304 stain-

,
less steel with Teflon and/or Kel-F t seats and seals. The flow system

schematic is shown in Fig. E-2. The oxidizer mass flow is kept constant

throughout a test by passing the flow through a sonic choke that is oper-

ated above the critical pressure ratio.

The grain is ignited by preflowing a small amount of oxygen and pro-

pane into the chamber and igniting it with a spark plug. The ignition sys-

tem is preset so that it operates near the lower flammability limit for

the oxygen-propane mixture, thus yielding an oxygen-rich high-temperature

source. The time for the flame to spread from the head end of the grain

* Trademark, E. I. duPont de Nemours and Co.

t Trademark, 3M Company.
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FIG. E-2 OXYGEN FLOW-CONTROL SYSTEM

TA-G631)-I

to the nozzle end was determined to be approximately one second. There-

fore, the main flow valve was delayed for that length of time. The weight

of fuel typically consumed during this ignition process was determined to

be 0.5 g which is about 1 percent of the amount o£ fuel that would be

consumed in a 5-sec test at a regression rate of 0.01 in./sec.

An automatic sequencer actuates the system. The run duration is set

and the events proceed as follows:
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Zero time

+I. 9 sec

+2.0 sec

+2.9 sec

+3.0 sec

+8, 13, or
18 sec

Pressure-recording oscillograph on

Oxidizer preflow valve open

Propane valve open and spark source on

Oxidizer main flow open

Oxidizer preflow and propane valves closed

Oxidizer main flow closed; nitrogen purge
valve open

Event markers are recorded on the oscillograph along with pressure-time

data obtained from strain-gage transducers at the entrance and exit of

the combustion changer. Running times of 5, 10, and 15 sec were chosen

to obtain the regression rate/time dependence.

To check the experimental apparatus, weight loss data were obtained

for the Plexiglas-oxygen propellant combination and compared with the pre-

dicted numerical results. This system was chosen because it has been ex-

tensively documented in the literature.2, 2s

Data were obtained at 5-, 10-, and 15-sec intervals for chamber

pressures of 45, 115, and 215 psia. The results are shown in Fig. E-3.

The regression rate, and therefore the weight loss, lessens as the pres-

sure is lowered, indicating that the burning process is not entirely heat-

transfer controlled at low pressures but that chemical kinetics must play

a role. Previous results have indicated that the heat-transfer controlled

limit, corresponding to the theoretical curve, is reached in the neighbor-

hood of 265 psia 2s for this propellant combination.
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Appendix F

CHAMBER PRESSURE RESPONSE TO VARIABLE OXIDIZER MASS FLOW

The equation expressing conservation of mass in the combustion cham-

ber is

d(o__V) _ _ + _f _ (F-l)
dt o n

Using the perfect gas law, p = pRT, and the equation for the mass flow

through the nozzle,

1

= 2 A (F-2)
n RT t

Eq. F-I becomes

V dp pV dT

RT dt 2 dt
RT

7p 2 2 At (F-3)

where the oxidizer and fuel mass flows have been lumped together for

convenience.

Two cases can be easily calculated--an isothermal process and an

isentropic process. In the isothermal case dT/dt = 0 and Eq. F-3 may be

written in the simple form

dP

K1 d--_ = mt - K2P (F-4)

where P = p/p., and
1
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p.V
1

K -
1 RT

i

1

2 y-1

Pi 2

K 2 = _ At i

Since Eq. F-4 is linear, solutions can be superimposed.

function of the form applied experimentally is

mt= ral + (m2 - ml ) (i + sin wt)

(F-5a)

(F-5b)

A typical forcing

(F-6)

which denotes the superimposition of a step function and a sine wave.

The solution for P is

(m2 - ml)["2 -t/T sin(w:2:2_ 1
P- v-- 1 - e + + 1 (F-7)

(1 +

-1

where %0 = - tan Tw is the phase angle, and T = K1/K 2 is the characteris-

tic time constant of the chamber. At large time, as t -. =, the mag-

nitude of the pressure oscillation divided by the magnitude of the mass

flow oscillation is

R

K P
2

2 1

1

22½
(I+Tw)

(F-s)

In the isentropic case, when p = pY, the counterpart of Eq. F-3 is

K X:! Y+__!
1 - y dP 2y

_P - M- K P
y dt 2

This equation is nonlinear and must be solved numerically.

(F-9)
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Appendix G

THERMOCHEMICAL CALCULATIONS FOR HYBRID PROPELLANTS

Thermochemical calculations were carried out for all of the PBAN-

oxygen and PU-oxygen propellant systems studied experimentally at chamber

pressures of 5 and 15 atm. Two O/F ratios were considered, stoichiometric

and three-quarters of stoichiometric, the latter value most closely repre-

senting hybrid operation. The calculated flame temperatures are needed

as inputs to the hybrid computer code. The results of the calculations

are given on the following pages.
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HY@RIC

ELEMENTS

1-I

C

N

AL
_-_NT H AL PY

SYSTEM NUMBER IA

IN REACTANTS, ATOMS

OF REACTANTSt KCAL

PRESSURE " 5

1.9756
1.3279
4,3061
0.0401
C.4670

-16.3358

ATI_SPHERES

FUEL
10.34

6.95
0.13
0.21
O.

OXIOIZER
O.
O.
2.00
O.
O°

BINDERS

O.

O.

O.

O.

I.CO

PRESSURE, ATN

TEMPERATURE, DEG K
HEAT CAPACITY, CAl.

ENThALPY, KCAL

ENTRCPY, CAL I DEG
FROZEN GAMMA

SHIFTING GAMMA

MOLS CF GAS

MOLECULAR WEIGHT

CENSITYt GM I CC

/DEG K

K

CHAMBER
5.0C00

3606.9656
233.5696
-16.3Z5B
240o5331

1.1948

1.1187
3.3_73

28.02BC
C.G00506155

HYBRID

ELEMENTS

C
C
N
AL
ENTHALPY

SYSTEM NUMBER IA

IN REACTANTS, ATOMS

OF REACTANTS, KCAL

PRESSURE =15

1.9756
1.3279
4.3061
C.C4G1
C.6670

-16.3358

ATMOSPHERES

FUEL
10.34

6.95
0.13
0.21
O.

OXIDIZER
O.

O.

2.00

O.

O.

BINDERS

O.

O.
O.

O.

l.O0

PRESSURE, ATM
TEMPERATUREw DEG K

HEAT CAPACITY, CAL.

FNTHALPY, KCAL
ENTRC)PYt CAL / DEG
FROZEN GAMMA
SHIFTING GAMMA

MOLS CF GAS

MOLECULAR WEIGHT

DENSITY, GM / CC

/DEG K

K

CHAMBER
15.0OCt

3802.0615
2C1.1827
-16.3358
233.3197

I°Ig96
1.1232
3.27C2

28.5647
C.001670C14

60% PBAN/40% AI (O/F = 2.16)
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HY8RID SYSTEM NUMBER 1B PRESSURE = 5 ATMOSPHERES

ELEMENTS IN REACTANTS, ATOMS FUEL OXIDIZER
H 2.3832 10.36 O.
C 1.6019 6.95 O.
0 3.9050 0.13 2.00

N 0.0484 0.21 O.
AL C.5636 O. O.

ENTHALPY OF REACTANTS, KCAL -|9.¥06T

PRESSURE, ATM
TEMPERATURE, OEG K
HEAT CAPACITy, CAL /DEG K
ENTHALPYt KCAL
ENTRCPYt CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
NOLS OF GAS
MOLECULAR WEIGHT
DENSITY, GN / CC

CHAMBER
5.0COO

3667.0©96
244.5151
-19.TC67
248.9_51

1.1965
1.1198
3.5238

26.3364
C.C0067151C

BINDERS
O.
O,
O.
0.
1.00

HYBRID SYSTEM NUMBER 18

ELEMENTS IN REACTANTSt ATOMS
H
C
0
N
AL
ENTHALPY OF REACTANTSe KCAL

PRESSURE =15 ATMBSPHERES

FUEL
2.3832 10.36
1.&019 6.95
3.9050 0.13
C.C684 0.21
C.5636 0.

-19.7067

OXIDIZER
O.
O.
2.00
O.
0.

BINDERS

O.
O.

O.

O.

l.CO

PRESSUREv ATM

TEMPERATUREt DEG K
HEAT CAPACITY, CAL /OEG K
ENTHALPYt KCAL
FNTRCPYt CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
NOLS CF GAS
MOLECULAR WEIGHT
DENSITYt GM / CC

CHAMBER
15.0COC

3867.8@80
207.98C1
-19.7C67
261.3212

1.1912
1.1266
3.4805

26.8536
0.001369447

60% PBAN/40% A1 (o/r = 1.62)
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HYERIE SYSTEM NUMBER IC

ELEMENTS IN REACTANTSt ATOMS

H

C

O

N

At
ENTHALPY OF REACTANTSt KCAL

PRESSURE = 5 ATMOSPHERES

FUEL OXIDIZER
2.6041 10.34 0.
1.4159 6.95 O.
6.6802 0.13 2.00
C.0488 0.21 0.
C.2150 0. 0.

-1g. B795

BINDERS

O.

0.

O.

0.

1.00

PRESSUREt ATM

TEMPERATUREt DEG K

HEAT CAPACITY, CAL ICEG K

ENTHALPY, KCAL"
ENTROPYt CAL / DEG K
FROZEN GAMMA

SHIFTING GAMMA

MOLS CF GAS

MOLECULAR WEIGHT

_ENSITY, GM / CC

CHAMBER
5.0COG

3630.596S
230.4661
-19.8T95
255.0676

1.20gl
I.I_B3
3.6522

26.6C35
C.000_86299

HYBRID SYSTEM NUMBER 1C

ELEMENTS IN REACTANTS, ATOMS

H

C

0

N

AL
ENTHALPY OF REACTANTS, KCAL

PRESSURE =15 ATMeSPHERES

FUEL OXIDIZER
2.6041 10.36 C.
1.6159 6.95 C.
4.6802 0.13 2.00
C.Okg8 0.21 C.
C.2150 C. C.

-Ig. B795

BINDERS
O.

0.

O.

O.

1.00

PRESSURE, ATM

TEMPERATURE, DEG K
HEAT CAPACITY, CAL /CEG K

ENTHALPY, KCAL
ENTRCPYt CAL / DEG K
FROZEN GAMMA

SHIFTING GAMMA

MCLS CF GAS

MOLECULAR WEIGHT

CENSITY, GM / CC

CHAMBER
15.0£CC

36C2.9991
Igg.7095

-19.8795
247.1_6

1.2C32
1.12_2
3.5S16

27.0389
C.001412666

80% PBAN/20% AI (O/F = 2,54)
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HYBRID SYSTEM NUMBER 1D PRESSURE - 5 ATMeSPHIERES

ELEMENTS
H
C
O
N
AL
ENTHALPY

IN REACTANTS, ATOMS

OF REACTANTSt KCAL

PRESSUREt ATM
TEMPERATURE_ DEG K
HEAT CAPACITYe CAL /DEG K
ENTHALPY_ KCAL
ENTROPY, CAL I DEG K
FROZEN GAMMA.
SHIFTING GAMMA
MOLS OF GAS
MOLECULAR WEIGHT
DENSITY_ GM / CC

2.9268
|.9672
4.0q93
0.0594
C.2595

-26.2012

CHANI.ER
50000¢

343C.605]
206.6_5
-24.2C12
267.0609

I.2|31

I.1236

3.9283
24.6S15

C.C00652116

FUEL
10.36

6.95
0.13
O.ZI
0.

OXIDIZER
0.
0o
2.00
0.
0.

BINDERS
O.
O.
O.
0.
I.O0

HYBRID

ELEMENTS
H
C
O
N
AL
ENTHALPY

SYSTEM NUMBER 1D

IN REACTANTSt ATOMS

OF REACTANTS, KCAL

PRESSURE =15

2.9268
1.9672
6.0q93
C.0594
C.2595

-24.2012

ATMOSPHERE S

FUEL
10.34

6.q5
0.13
0.21
0.

OXIDIZER
O.
O.
2.00
O.
0.

BINCERS
O.

O.

O.
O.

1.00

CHAMtBER
PRESSUREe ATM 15. 000C
TEMPERATURE, DEG K 3596.2§33
HEAT CAPACITY, CAL /DEG K 175.22.33
ENTHALPY_ KCAL -24.2C12
ENTROPYt CAL / DEG K 258.5618
FROZEN GAMMA 1.2C85
SHIFTING GAMMA 1.1]193
NOLS OF GAS 3.8t66
MOLECULAR WEIGHT 25.0932
DENS ITYt GN / CC C.001316573

80% PBAN/20% A1 (o/r = 1.91)
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HYERIC SYSTEM NUMBER [E PRESSURE = 5 ATMeSPHERES

ELEMENTS IN REACTANTSt ATOMS FUEL
H 2. 5923 10.36
C 1 ° 7626 6. q5
0 6°7326 0.13
N C.C526 0.21
ENTHALPY OF REACTANTSt KCAL "-21.,6353

OXIDIZER
O.
0.
2.00
O.

PRESSURE, ATN
TENPERATUREt DEG K
HEAT CAPACITYt CAl. /DEG K
ENTHALPYe KCAL
ENTROPY, CAL / CEG K
FROZEN GAMMA
SHIFTING GAMMA
MOLS CF GAS
MCLECtJL AR WEIGHT
CENSITY_ GM / CC

CHAMBER
5.0¢©C

3286.74tl
226.620T
-21.435)
262.3912

1.2174
1.1172
3.8Zg4

26.1136
0.000484101

HYBRIC SYSTEM NUMBER 1E

ELEMENTS IN REACTANTSt ATOMS
H
C
0
N

ENTHALPY OF REACTANTSt KCAL

PRESSUREt ATM
TENPERATURE_ DEG K
HEAT CAPACITYe CAL /DEG K
ENTHALPY_ KCAL
ENTROPY, CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
NOLS CF GAS
NCLECULAR WEIGHT
CENSITYt GM / CC

PRESSURE =15 ATMBSPHERES

FUEL OXIDIZER
2.5923 10.34 O.
1.7624 6.95 0.
4.7326 0.13 2.00
C. C526 0.21 C.

-21.4353

CHAMBER
15.0¢CC

3441.3549
195.8732
-21.4253
254.0|_3

1.2128
1.1222
3.7754

26.6_76
C.001406923

100% PBAN (O/F = 3.11)
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HYBRID SYSTEM NUMBER 1F

ELEMENTS IN REACTANTS, ATOMS
H
C
D
N
ENTHALPY OF REACTANTS, KCAL

PRESSURE i 5 ATNIISPHER4ES

FUEL OXIDIZER
3.1986 10.J4 O.
2. 1499 6.95 O.
4.$777 0.13 2.00
0.0650 0.21 O.

"Z6. 44184

PRESSURE, ATM
TEMPERATURE, OEG K
HEAT CAPACITYt CAL /DEG K
ENTHALPYt KCAL
ENTROPYt CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
MOLS OF GAS
MOLECULAR MEIGHT
DENS ITYt GM / CC

CHAMBER
5.0©@C

3266.0898
lg6.0qHlq
-26.4484
27T.4@1C

1.2264
1.11Hi7
4.1625

24.0238
C.C00648112

HYBRID SYSTEM NUMBER 1F

ELEMENTS IN REACTANTSt ATOMS
H
C
0
N
ENTHALPY OF REACTANTS, KCAL

PRESSURE, ATM
TEMPERATURE, OEG K
HEAT CAPACITYt CAL IDEG K
ENTHALPYt KCAL
ENTROPY, CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
MOLS OF GAS
MOLECULAR HE|GHT
DENSITYt GM / CC

PRESSURE =15 ATIqBSeHERES

FUEL OXIDIZER
3.i986 10.3,4 O.
2.|699 6.95 O.
6.$777 0.13 2.00
0.0650 0.21 O.

-26.ab48_

CHAMBER
15.0¢00

3610.66B2
166.9662
-26.64t6
268.3119

1.2,©0
1.1299
4.1©87

24.3]e6
C.001304_1k5

100% PBAN (O/F = 2.34)

107



HYBRID PRESSI.ME - 5 ATMI_*SPI_IIIES

ELEMENTS
H
C
O
N
AL
ENTHALPY

SYSTEM NUMBER 2A

IN REACTANTS, ATOMS

OF REACTANTS, KCAL

2.1811
1.1845
4.Z815
000265
©0S448

-1q.3253

FUEL
g.tT
5.16
1.50
0.|2
O.

OXIDIZER
O.
O.
2.00
O.
O.

BINDERS

O.
I,

O.
O.

O.

I.O0

PRESSURE, ATM
TEMPERATURE,
HEAT CAPACITY_
ENTHALPY, KCAL
ENTROPY, CAL /
FROZEN GAMMA
SHIFTING GAMMA
MOLS OF GAS
MOLECULAR MEIGHT
DENSITYt GM I CC

DEG K
CAL /CEG K

DEG K

CHAMWER
5.0_©C

3632.5|g11
241.T165
-lg.2_53
241.166¥

l.l|Bg

I.I177

3.31gl
2T.8qCl

C.COC5C4].32

HYBRID

ELEMENTS
H
C

N

_L
ENTH_LPY OF

SYSTEM NUMBER 2A

IN REACTANTSI ATOMS

REACTANTS, KCAL

PRESSURE =15

2.1Bll
1.1845
6. Z815
0.0265
0.5648

-19.3253

ATMOSPHERES

FUEL
9.87
S.36
1.5C
0.|2
O.

OXIDIZER
O.
O.
2.00
O.
O,

BINCERS
O.
O.
O.
O.
1.00

CHAMBER
PRESSURE, ATM 15° 0¢CC
TEMPERATURE, DEG K 3831.5S46
HEAT CAPACITY, CAL /DEG K 2CT°4_29
ENTHALPYt KCAL -Iq° 2Z5_
ENTROPYt CAL / DEG K 233.91175
FROZEN GAMMA 1.1g_36
SHIFTING GAMMA 1.1221
MOLS OF GAS 3.2E29
MOLECULAR HEIGHT 28.3_47
DENSITY, GM / CC C.001466416

60% PU/40% AZ (O/F = 1.72)
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HYBRID SYSTEM NUMBER 2B PRESIM, tRE w S ATMOS/_HERES

ELEMENTS IN REACTANTSe ATOMS IFUEL
H Z.SM7 9.07
C |.4O42 4.116
0 4;.OOS5 1.60
N 0.0314 0.22
AL 0.6523 O.
ENTHALPY OF REACTANTSt KCAL '_]ta._qt|O

OX|D|ZER
0,,
O.
2.00
O.
Oo

PRESSUREt ATM
TENPERATUREt OEG K
HEAT CAPACITYt CAL /i)EG K
ENTHALPYe KCAL
ENTROPY_ CAL / DEG K
FROZEN GAMMA
SHIFT ING GAMMA
MOLS OF GAS
MOLECULAR WEIGHT
DENSITYe GM / CC

CHANSER
S. 04)r_

3694° 1693
261. 11149
-22.7g:lO
2411. T¢t111

1.1114jl
1. llTt
3.41164

26.2g_C
C.000472993

BINDERS
O.
D.
O.
O.
1.00

HYBRIC SYSTEM NUMBER 26

ELEMENTS IN REACTANTSt ATOMS
H
C
13
N
AL
ENTHALPY OF REACTANTSt KCAL

PRESSUREw ATM
TEMPERATUREt OEG K
HEAT CAPACITY_ CAL IDEG K
ENTHALPYt KCAL
ENTROPYt CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
MOl.S OF GAS
MOLECULAR WEIGHT
OENS ITY,I GM I CC

PRESSURE :15 ATM1BSPHERES

FUEL
2.5857 9.87
1.4042 5.36
3.9055 1.50
0.0314 0.12
C.6523 O.

-22.7920

OXIDIZER
O.
O.
2.00
C.
O.

CHAMBER
15.0©C0

3900.9C78
221.9_65"
-22.Tg2C
241.11106

1.1B38
1.1123
3.4©93

26.8422
C.001374237

81NCERS

O.

O.

O.
O.

1.00

60% PU/40% A1 (O/F = 1.28)
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HYBR|D ATMSPflERES

ELEMENTS
H
C
0
N
AL
ENTHALPV

SYSTEM NUMBER 2C PRESSJURE u 5

IN REACTANTS, ATOMS

OF REACTANTS, KCAL

PRESSURE, ATM
TEMPERATURE, DEG K
HEAT CAPACITY, CAL
ENTHALPY, KCAL
ENTROPY, CAL / OEG
FROZEN GAMMA
SHIFTING GAMMA
MOLS OF GAS
MOLECULAR WEIGHT
CENSZTY, GM / CC

/OEG K

K

].4351
1._310
6.5630
C.©320
0.a483

-IB.a269

CHAMBER
S. OeO_

341"/.'/q4&
232.9202
-23.2269
256.2J111

1.2C,1B
1.1171
3.64113

26.5124
0.000488439

FUEL
9. I1"/

1.50
O. 12
O.

OXIDIZER
O.
O.
2.00
O.
O.

BINDERS
O.
O.
O.
O.
1.00

HYBRTD SYSTEM NUMBER

ELEMENTS
H
C
C)
N
AL
ENTHALPY

IN REACTANTS,

2C

ATOMS

OF REACTANTS, KCAL

/DEG

K

PRESSURE, ATM
TEMPERATURE, DEG K
HEAT CAPACTTY, CAL
ENTHALPYt KCAL
ENTROPY, CAL / DEG
FROZEN GAMMA
SHIFTTNG GAMMA
MOLS CF GAS

MOLECULAR NEIGHT

OENSITY, GM / CC

PRESSURE =15

2.4351
1.4310
6.5630
C.0320
C.3683

-23.Z269

CHAMBER
15.C¢CC

3588.6q61
201.6443
-23.2Z7C
248.3592

1.198C
1.111B
3.5eT2

26°949©
C.001_1g_32

ATNgSIFHERES

FUEL
9.87
5.36
1.5C
0.12
O.

OXIDIZER
0.
C.
2.00
C.
O.

BINCERS

O.

O.
C.

O.

I.CO

80% PU/20% A1 (O/F = 2.00)
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HYBRID SYSTEM NUMBER 20 PRESSURE ,, § ATMBS/q'IERES

ELEMENTS IN REACTANTSv ATOMS
H
C
0
N
AL
ENTHALPY OF REACTANTSt KCAL

FUEL
3.Z779 9.87
1.7258 6.)6
4._1E05 1.S0
0.0386 0._2
C.2965 O.

._.ze.all5

OXIDIZER
O.
O.
2.00
C.
O°

BINDERS
O.
O.
O.
C.
1.00

PRESSUREt ATM
TEMPERATUREt DEG K
HEAT CAPACITY. CAL /DEG K
ENTHALPY_ KCAL
ENTROPY_ CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
NOLS OF GAS
MOLECULAR WEIGHT
DENSITYt GN / CC

CHAMBER
5°0_C

3438o2041
227.3410

-2B°0215
268.2©76

1.2C57
1.11104
3.9©07

24.7054
C.000_56307

HYBRID SYSTEM NUMBER 2D

ELEMENTS IN REACTANTS, ATOMS
H
C
13
N
AL
ENTHALPY OF REACTANTS, KCAL

PRESSURE, ATM
TEMPERATURE, DEG K
HEAT CAPACITY, CAL !DEG K
ENTHALPY, KCAL
ENTROPY, CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
NOLS OF GAS
MOLECULAR WEIGHT
DENSITY, GM / CC

PRESSURE =15 ATMOSPHERES

FUEL
3.t779 9.87
1.7258 5.36
4.Z2C5 1.50
C.C386 0.12
C.2965 O.

-28.Cl15

OXIDIZER
C.
C,
2.00
O°
O.

CHAMBER
15.0CCC

3608.58C2
193o932C
-28.0115
259.762C

1.2CIC
1.1255
3.8357

25.1C87
C.C01320_5_

BINDERS
O.

O.
O.

O.

1.CO

80% PU/20% A1 (O/F = 1.50)
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HYBRID SYSTEM NUMBER 2E PRESSURE - 5 ATMOSPHERES

ELEMENTS IN REACTANTSe ATOMS FUEL
H 3.C101 9.87
C 1.6347 5. B6
G 6.8012 1.50
N 6,0366 0.12
ENTHALPY OF REACTANTSt KCAL -26.5326

OXIDIZER
C.
¢.
2.00
O.

PRESSURE_ ATM
TEMPERATURE_ DEG K
HEAT CAPACITY. CAL /DEG K
ENTHALPY. KCAL
ENTRCPY_ CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
MOLS GF GAS
MOLECULAR WEIGHT
DENSITYI GM / CC

CHAMBER

5.0CC0
3256.55C_

226.1e79
-26.5326
268.1C19

1.216C
1.1164
3.919C

25.516_
C.COC477426

HYSRIC SYSTEM NUMBER 2E PRESSURE =15 ATMCSPHERES

ELEMENTS IN REACTANTSt ATOMS FUEL
H 3.0101 9.8T
C 1.6347 5.36
0 6.8012 1.5C
N C.C366 0.12
ENTHALPY OF REACTANTSv KCAL -26.5326

CXIDIZER
O.
C.
2.00
C.

PRESSUREv ATM
TEMPERATUREw DEG K
HEAT CAPACITY_ CAL /CEG K
ENTHALPY,I KCAL
ENTROPYw CAL / DEG K
FRGZEN GAMMA
SHIFTING GAMMA

MDLS OF GAS

MOLECULAR WEIGHT

DENSITYt GM I CC

CHAMBER
15.0CCC

3606.9¥6C
19T.2_91

-26.5327
25g.6C6g

1.2C94

1.1II3
3.8665

25.8763
C.001388326

100% PIT (o/r = 2.27)
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HYBRID SYSTEM NUMBER 2F PRESSURE = 5 ATNeSPH_ERES

ELEMENTS IN REACTANTS_ ATOMS FUEL
H 3.&220 9.87
C 1.9669 5.36
0 4.5067 I.$0

N O.O/e60 0.12
ENTHALPY OF REACTANTSt KCAL -3_.9262

PRESSUREt ATM
TEMPERATUREt OEG K
HEAT CAPACITYt CAL /DEG K
ENTHALPYt KCAL
ENTROPYt CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
MOLS CF GAS
MOLECULAR gE IGHT
DENSITYs, GM / CC

CHAMBER
5.000C

3265.2[5q
209.7912
-31.9262
282.6601

1.21||
1.120q
4.2231

23.6792
C.000664591

OXIDIZER
0.
O.
2.00
0.

HYBRIC SYSTEM NUMBER 2F PRESSURE =15 ATMESPHERES

ELEMENTS IN REACTANTS_ ATOMS FUEL
H 3.6220 9.87
C 1.9669 5.36
0 4.5067 1.50
N C.0660 0.12
ENTHALPY OF REACTANTSt KCAL -31.9262

OXIDIZER
O.
O.
2.00
C.

PRESSUREt ATM
TEMPERATUREt CEG K
HEAT CAPACITYt CAt. /DEG K
ENTHALPY_ KCAL
ENTROPYt CAL / DEG K
FROZEN GAMMA
SHIFTING GAMMA
NOLS OF GAS
MOLECULAR NEIGHT
DENSITY_ GM / CC

CHAMBER
15.0_CC

3389.2556
179.2704
-31.9262
273.2606

1.2165
1.1266
4.1t77

23.9942
C.0012Q407_

100% _ (O/F = 1.73)
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